Derivalives
$\sin A-\sin B$

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

$$
\frac{d}{d x} f(x)=\operatorname{ct}_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
\leq 2 \sin \left(\frac{A-B}{2}\right) \cos \left(\frac{A+B}{2}\right)
$$

functions
(1) algetraic $\rightarrow x^{n}$.
(2). Trijonometric $\rightarrow \sin x \mid \cos x$.
(3) Experiential $\rightarrow e^{x} / a^{x}$.

$$
\begin{aligned}
\frac{d}{d x} \sin x & =\alpha_{h \rightarrow 0} \frac{\sin (\pi+h)-\sin x^{B}}{h} \\
& =\alpha_{h \rightarrow 0} \frac{2 \sin \left(\frac{h}{2}\right) \cos \left(\frac{2 x+h}{2}\right)}{h}
\end{aligned}
$$

$$
=\operatorname{\alpha t}_{h \rightarrow 0} \frac{\sin (h / 2)}{(h / 2)} \cdot \operatorname{\alpha t}_{h \rightarrow 0} \cos \left(\frac{2 \lambda+h}{2}\right)
$$

$$
\begin{aligned}
& =1 \cdot \cos \left(\frac{2 \pi}{2}\right)=\cos x \\
& \operatorname{Lt}_{x \rightarrow 0} \frac{\sin x}{x}=1 \\
& \sin (-x)=-\sin x \\
& \cos A-\cos B=2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{B-A}{2}\right) \\
& \frac{d}{d x}(\cos x)=\alpha_{h \rightarrow 0} \frac{\cos (x+h)-\cos x}{h}=\alpha_{h \rightarrow 0} \frac{2 \sin \left(\frac{2 x+h}{2}\right) \sin \left(-\frac{h}{2}\right)}{h .} \\
& =\alpha_{h \rightarrow 0}-\frac{\sin \left(\frac{h}{2}\right)}{(h / 2)} \sin \left(\frac{2 \lambda+h}{2}\right) \\
& =-\operatorname{Lt}_{h \rightarrow 0} \frac{\sin (h / 2)}{(h / 2)}{\underset{h \rightarrow 0}{ }}_{\alpha t} \sin \left(\frac{2 x+h}{2}\right) \\
& \leq-1 x \sin \left(\frac{2 \pi}{2}\right)=-\sin x \\
& \frac{d}{d x} e^{x}=\alpha_{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h} \\
& e^{x+h}=e^{x} \cdot e^{h .} \\
& =\operatorname{Lt}_{h \rightarrow 0} \frac{e^{x} \cdot e^{h}-e^{x}}{h .} \\
& =\operatorname{Lt}_{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h .} \\
& =e^{x \operatorname{lt}_{h \rightarrow 0} \frac{e^{h}-1}{h} \text {. }} \\
& =e^{x} \\
& \text { Tayler Serien. } \\
& e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \cdot \\
& e^{h}=1+h+\frac{h^{2}}{2!}+\cdots \cdot \text {. } \\
& e^{h}-1=h+\frac{h^{2}}{2!}+\frac{h^{3}}{3!}+\cdots \cdot \\
& \frac{e^{h}-1}{h}=1+\frac{h}{2!}+\frac{h^{2}}{3!}+\cdots \cdot
\end{aligned}
$$

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

$$
\frac{d}{d x} \operatorname{sen} x=\cos x
$$

$$
\begin{aligned}
\frac{d}{d x} x^{-1} & =(-1) x^{-1-1}=-x^{-2} \\
& =-\frac{1}{x^{2}}
\end{aligned}
$$

(1)

$$
\begin{aligned}
& y=f(x) \pm g(x) \\
& \frac{d y}{d x}=\frac{d}{d x} f(x) \pm \frac{d}{d x} g(x)
\end{aligned}
$$

$$
\frac{d}{d x} \cos x=-\sin x
$$

(2). $y=f(x) \cdot g(x)$ Porduct sule.

$$
\frac{d}{d x} e^{x}=e^{x}
$$

$$
\frac{d}{d x} \log x=\frac{1}{x}
$$

(3)

$$
y=\frac{f(x)}{g(x)}=\frac{u}{v}=u \cdot v^{-1}
$$

$$
\frac{d y}{d x}=u^{\prime} v^{-1}+u\left(v^{-1}\right)^{\prime}
$$

$$
=u^{\prime} \cdot \frac{1}{v}+u \cdot\left(-\frac{v^{\prime}}{v^{2}}\right)
$$

$$
=\frac{u^{\prime} v-v^{\prime} u}{v^{2}} \quad \text { Qustiont Rule }
$$

(4)

$$
\begin{array}{ll}
y=f[g(x)] & g(x)=u . \\
y=f(u) \\
\frac{d}{d u} y=\frac{d}{d u} f(u) & \text { Chain Rule }
\end{array}
$$

$$
\begin{aligned}
& \frac{e^{n}-1}{h}=1+\frac{h}{2!}+\frac{h^{-}}{3!}+\cdots \cdot \\
& \log _{e} x=\ln x . \\
& \frac{d}{d x}\left(\log _{e} x\right)=\operatorname{lt}_{h \rightarrow 0} \frac{\log (x+h)-\log x .}{h .} \\
& =\operatorname{lt}_{h \rightarrow 0} \frac{\log \left(\frac{x+h}{x}\right)}{h .} \\
& \operatorname{Ltt}_{h \rightarrow 0} \frac{e^{h}-1}{h}=1 \\
& \log a-\log b=\log \left(\frac{a}{b}\right) \\
& =\operatorname{lt}_{h \rightarrow 0} \cdot \frac{\log \left(1+\frac{h}{x}\right)}{h} \\
& =\frac{1}{x} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d x}(c x) & =u^{\prime} v+v^{\prime} u \\
& =0+c \\
& =c \\
\frac{d}{d x}(c x) & =c \frac{d}{d x}(x)=c
\end{aligned}
$$

$$
\frac{d}{d x} e^{x}=e^{x}
$$

$$
\left.\begin{array}{rl}
\begin{array}{rl}
\frac{d y}{d x} & =\frac{d y}{d u} \cdot \frac{d u}{d x}
\end{array}=\frac{d}{d u} f(u) \cdot \frac{d u}{d x} \\
& =\frac{d}{d u} f(u) \cdot \frac{d}{d x} g(x)
\end{array}\right] \begin{aligned}
& \frac{d}{d x} \tan x=\frac{d}{d x} \frac{\operatorname{sen} x}{\cos x} \frac{u}{v}=\frac{u^{\prime} v-v^{\prime} u}{v^{2}} \\
&= \frac{\cos x \cos x-(-\sin x) \sin x}{\cos ^{2} x}
\end{aligned} \quad=\frac{\cos ^{2} x+\operatorname{sen}^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x} .
$$

Methrd 2

$$
\begin{aligned}
\frac{\operatorname{lund} 2}{x}=e^{\left[\log \left(a^{x}\right)\right]} \\
\begin{aligned}
\frac{d}{d x}\left(a^{x}\right) & =\frac{d}{d x} e^{\left(\log a^{x}\right)} \quad \log e^{x}=x=e^{\log x} \\
\log x=\log x \cdot \log e & =\log x . \\
= & \frac{d}{d x} e^{u}=\frac{d}{d u} e^{u} \cdot \frac{d u}{d x}=e^{u} \cdot \frac{d}{d x}\left(\log a^{x}\right) \quad \log a^{x}=x \log a \\
& =e^{u} \cdot \frac{d}{d x}[x \log a]=e^{u} \log a \cdot=a^{x} \log a
\end{aligned}
\end{aligned}
$$

$n x=4$

$$
\begin{aligned}
\frac{d}{d x} \sin (n x) . & =\frac{d}{d x} \sin u \cdot \frac{d}{d u} \sin u \cdot \frac{d u}{d x}=\cos u \cdot \frac{d}{d x}(n x) \\
& =\cos (n x) n \cdot \frac{d}{d x}(x)=n \cdot \cos (n x) \\
\frac{d}{d x} \cos (n x) & =-n \sin (n x)
\end{aligned}
$$

$n x=u$

$$
\begin{aligned}
\frac{d}{d x}\left(e^{n x}\right)=\frac{d}{d x} & e^{u}=\frac{d}{d u} e^{u} \cdot \frac{d u}{d x}=e^{u} \cdot \frac{d}{d x}(n x)=e^{n x} \cdot n \\
& =n e^{n x} .
\end{aligned}
$$

$$
\frac{d}{d x} \log (n x)=\frac{1}{n x} \cdot n=\frac{1}{x} \text {. }
$$

Function' of functions
$x^{2}=4$

$$
\begin{aligned}
& y=\sin \left(x^{2}\right) \quad \frac{d}{d x} y=\frac{d}{d x} \sin u=\frac{d}{d u} \sin u \cdot \frac{d u}{d x}=\cos u \cdot \frac{d}{d x}\left(x^{2}\right) \\
& \frac{d}{d x} x^{2}=2 x . \quad=2 x \cos \left(x^{2}\right) \\
& y=\log (\underset{u}{(\sin x}) \quad \frac{d y}{d x}=\frac{d}{d x} \log u=\frac{d}{d u} \log u \cdot \frac{d u}{d x} \\
& =\frac{1}{u} \cdot \frac{d}{d x}(\sin x)=\frac{1}{\sin x} \cdot \cos x=\cot x . \\
& y=x^{\left(e^{x}\right)} \\
& \log y=\log x^{\left(e^{x}\right)}=e^{x} \cdot \log x \text {. } \\
& u=e^{x} \quad u^{\prime}=e^{x} \\
& v=\log x \quad v^{\prime}=\frac{1}{x} \text {. } \\
& \frac{d}{d x}(\log y)=u^{\prime} v+v^{\prime} u \cdot v=e^{x} \cdot \log x+\frac{1}{x} e^{x}=e^{x}\left[\log x+\frac{1}{x}\right] \\
& \frac{d}{d y} \log y \cdot \frac{d y}{d x}=e^{x}\left[\log x+\frac{1}{x}\right] \\
& \frac{1}{y}\left(\frac{d y}{d x}\right)=e^{x}\left[\log x+\frac{1}{x}\right] \\
& \frac{d y}{d x}=y \cdot e^{x}\left[\log x+\frac{1}{x}\right]=e^{e^{x}} \cdot e^{x}\left[\log x+\frac{1}{x}\right] \\
& y=x^{x}
\end{aligned}
$$

$$
\begin{aligned}
& \log y=x \log x . \\
& \frac{d}{d x} \log y=\log x+x \cdot \frac{1}{x}=\log x+1 \\
& \frac{d}{d y} \log y \cdot \frac{d y}{d x}=\log x+1 \\
& \frac{1}{y} \cdot \frac{d y}{d x}=\log x+1 \quad \frac{d y}{d x}=y(\log x+1)=x^{x}(\log x+1)
\end{aligned}
$$

