Pris a horizonthe line which is pufuty dentre
Only in a pufury compatitive mutat

$$MR = PR = P$$
 U
Objective of the firm is to maximise people
 $\Pi = TR - Te$ V
 $For $\frac{\partial \Pi}{\partial Q} = 0$ $\frac{\partial^2 \Pi}{\partial Q^2} < 0$
 $\frac{\partial TR}{\partial Q} - \frac{\partial TC}{\partial Q} = 0$ $\frac{\partial^2 TR}{\partial Q^2} - \frac{\partial^2 Te}{\partial Q^2} < 0$
 $\frac{\partial TR}{\partial Q} - \frac{\partial TC}{\partial Q} = 0$ $\frac{\partial^2 TR}{\partial Q^2} - \frac{\partial^2 Te}{\partial Q^2} < 0$
 $\frac{\partial TR}{\partial Q} - \frac{\partial TC}{\partial Q} = 0$ $\frac{\partial^2 TR}{\partial Q^2} - \frac{\partial^2 Te}{\partial Q^2} < 0$
 $\frac{\partial R}{\partial Q} = \frac{\partial TC}{\partial Q} = 0$ $\frac{\partial^2 TR}{\partial Q^2} - \frac{\partial^2 Te}{\partial Q^2} < 0$
 $\frac{\partial R}{\partial Q} = \frac{\partial TC}{\partial Q} = 0$ $\frac{\partial^2 TR}{\partial Q^2} - \frac{\partial^2 Te}{\partial Q^2} < 0$
 $\frac{\partial R}{\partial Q} = \frac{\partial TC}{\partial Q} = 0$ $\frac{\partial^2 TR}{\partial Q^2} - \frac{\partial^2 Te}{\partial Q^2} < 0$
 $\frac{\partial R}{\partial Q} = \frac{\partial TC}{\partial Q} = 0$ $\frac{\partial S}{\partial Q^2} < 0$
 $\frac{\partial R}{\partial Q} = \frac{\partial TC}{\partial Q} = 0$ $\frac{\partial S}{\partial Q^2} < 0$
 $\frac{\partial R}{\partial Q} = \frac{\partial TC}{\partial Q} = 0$ $\frac{\partial S}{\partial Q^2} < 0$
 $\frac{\partial R}{\partial Q} = \frac{\partial TC}{\partial Q} = 0$ $\frac{\partial S}{\partial Q^2} < 0$
 $\frac{\partial R}{\partial Q} = \frac{\partial TC}{\partial Q} = 0$ $\frac{\partial S}{\partial Q^2} < 0$
 $\frac{\partial R}{\partial Q} = \frac{\partial TC}{\partial Q} = 0$ $\frac{\partial S}{\partial Q^2} < 0$
 $\frac{\partial R}{\partial Q} = 0$ $\frac{\partial S}{\partial Q} = 0$ $\frac{\partial S}{\partial Q^2} < 0$
 $\frac{\partial R}{\partial Q} = 0$ $\frac{\partial S}{\partial Q} = 0$ $\frac{\partial S}{\partial Q} = 0$
 $\frac{\partial R}{\partial Q} = 0$ $\frac{\partial S}{\partial Q} = 0$ $\frac{\partial S$$

Short-tum supply curve
$$G^{\mu}(M)$$

Short-tum supply curve $G^{\mu}(M)$
 $G^{\mu}($

$$M_{int} = M_{int} M_{int} S = [N \times Si(p) = S(p)]$$

$$\frac{1}{2} \cdot Rt + He + b + at cost econverses is given My C_{int} = 0.1 q_{int}^{int} - 2q_{int}^{int} + 16 q_{int}^{int} + 10$$

$$\frac{1}{2} \cdot M_{int} = \frac{1}{2} \cdot M_{int}^{int} + \frac{1}{2} \cdot M_{int}^{int} +$$

For a market with 100 firms, the market supply

$$G = 100 \times \left[\frac{42}{2} = 0\right]$$

For a market with 100 firms, the market supply
 $G = 100 \times \left[\frac{42}{2} \sqrt{\frac{12P-2}{0.6}}\right]$. It P36
 $G = 100 \times \left[\frac{42}{0.6} \sqrt{\frac{12P-2}{0.6}}\right]$. It P36
 $F = 0$ for P<5.

Break-even 1