Astronomy	
csin-centered universe	Copernicus, Nicholaus
Planets' true orbits	Kepler, Johannes
Other planets have moons	Galilei, Galileo
Distance to the sun	Cassini, Giovanni
Galaxies	Herschel, William
	Wright, Thomas
Black hole	Schwarzschild, Karl Wheeler John
Expanding universe	Hubble, Edwin
The Big Bang	Gamow, George
Quasar	Sandage, Allan
Pulsar	Bell, Jocelyn
	Hewish, Antony
Dark matter	Rubin, Vera
Planets around other stars	Mayor, Michel
	Queloz, Didier
Universe is accelerating	Perlmutter, Saul
Biology	
Cells	Hooke, Robert
Fossils	Steno, Nicholas
Bacteria	Leeuwenhoek, Anton van
Taxonomy system	Linnaeus, Carl
Photosynthesis	Ingenhousz, Jan
Dinosaur fossils	Buckland, William
	Mantell, Gideon
Germ theory	Pasteur, Louis
Deep-sea life	Thomson, Charles
Cell division	Flemming, Walther
Wirus	Beijerinick, Martinus
	Ivanovsky, Dmitri
Cell structure	Claude, Albert
Origins of life	Miller, Stanley
Nature of dinosaurs	Bakker, Robert
Wuman anatomy	Vesalius,
\checkmark Evolution	Darwin, Charles
Heredity	Mendel, Gregor
Mitochondria	Benda, Carl
Genetic mutations	Morgan, Thomas
Neurotransmitters	Loewi, Otto
	Walder-Hartz, Heinrich
Human evolution	Dart, Raymond
Coelacanth	Smith, J. L. B
Jumping genes	McClintock, Barbara
WNA	Crick, Francis
	Watson, James
	Franklin, Rosalind
Complete evolution	Margulis, Lynn
Human genome	Venter, Craig

Copernicus, Nicholaus
Kepler, Johannes
Cassini, Giovanni
Herschel, William
Wright, Thomas
Schwarzschild, Karl
Wheeler, John
Hubble, Edwin
Gamow, George
Sandage, Allan
Bell, Jocelyn
Hewish, Antony
Rubin, Vera
Mayor, Michel
Queloz, Didier
Perlmutter, Saul

Chemistry

Boyle's Law	Boyle, Robert
Oxygen	Priestley, Joseph
Electrochemical bonding	Davy, Humphrey
Molecules	Avogadro, Amedeo
Atomic light signatures	Bunsen, Robert
	Kirchhoff, Robert
Periodic Table	Mendeleyev, Dmitri
Radioactivity	Curie, Marie and Pierre
Radioactive dating	Boltwood, Bertram
1sotopes	Soddy, Frederick

Physics	
Cevers and buoyancy	Archimedes
Law of falling objects	Galilei, Galileo
Air pressure	Torricelli, Evangelista
\checkmark Universal gravitation	Newton, Isaac
Laws of motion	Newton, Isaac
\checkmark Nature of electricity	Franklin, Benjamin
Conservation of matter	Lavoisier, Antoine
Nature of heat	Rumford, Count
Infrared	Herschel, Frederick
Ultraviolet	Ritter, Johann
Atoms	Dalton, John
Electromagnetism	Oersted, Hans
Calorie	Joule, James
Conservation of energy	Helmholtz, H. von
Doppler effect	Doppler, Christian
\checkmark Electromagnetic radiation	Maxwell, James
W-rays	Roentgen, Wilhelm
Energy equation	Einstein, Albert
\checkmark Kelativity	Einstein, Albert
Superconductivity	Onnes, Heike
Atomic bonding	Bohr, Niels
Quantum theory	Born, Max
Uncertainty Principle	Heisenberg, Werner
Speed of light	Michelson, Albert
Antimatter	Dirac, Paul
Meutron	Chadwick, James
Strong force	Yukawa, Hideki
Nuclear fission	Meitner, Lise
	Hahn, Otto
Semiconductor transistor	Bardeen, John
Definition of information	Shannon, Claude
Xuclear fusion	Bethe, Hans
	Spitzer, Lyman
Quarks	Gell-Mann, Murry
Weak force	Rubbia, Carlo

Boyle, Robert
Priestley, Joseph
Davy, Humphrey
Avogadro, Amedeo
unsen, Robert

Mendeleyev, Dmitri
Curie, Marie and Pierre

Soddy, Frederick

Archimedes
Galilei, Galileo
Torricelli, Evangelista
Newton, Isaac
Newton, Isaac
Franklin, Benjamin
Lavoisier, Antoine
Rumford, Count
Herschel, Frederick
Ritter, Johann
Dalton, John
Oersted, Hans
Joule, James
Helmholtz, H. von
Doppler, Christian
Maxwell, James
Roentgen, Wilhelm
Einstein, Albert
Einstein, Albert
Onnes, Heike
Bohr, Niels
Born, Max
Heisenberg, Werner

Michelson, Albert
Dirac, Paul
Chadwick, James
Yukawa, Hideki
Meitner, Lise
Hahn, Otto
Bardeen, John
Shannon, Claude
Bethe, Hans
Spitzer, Lyman

Rubbia, Carlo

Complete evolution
Human genome

Human circulatory system
Vaccinations

Anesthesia
Chloroform (anesthesia)
Ether (anesthesia)
\checkmark Blood types
Gormones
Vitamins

Antibiotics
\checkmark Jnsulin
Penicillin
Genes
Metabolism (Krebs Cycle)
Blood plasma

таикшш, пизании
Margulis, Lynn
Venter, Craig
Watson, James

Harvey, William
Montagu, Lady Mary Wortley
Jenner, Edward
Davy, Humphry
Simpson, Young
Long, Crawford
Landsteiner, Karl
Bayliss, William
Starling, Ernest
Hopkins, Frederick
Eijkman, Christiaan
Ehrlich, Paul
Banting, Frederick
Flemming, Alexander
Beadle, George
Krebs, Hans
Drew, Charles

Franklin, Benjamin
Humbolt, A. von
Hutton, James
Agassiz, Louis
Milankovich, Milutin
de Bort, L. Teisserenc
Reid, Harry
Gutenberg, Beno
Wegener, Alfred
Tansley, Arthur
Hess, Harry
Lorenz, Ed

LIST OF SCIENTIFIC INSTRUMENTS AND THEIR USES

	Determines boiling point of liquids.	Wayne R Norman
Lactometer	Measures the relative density of milk.	Mr. Dicas
Machmeter	Determines the speed of an aircraft relative to the speed of sound	Angst Walter
Manometer	Compares magnetic movement and fields	Otton von Guerick
Manometer	Used to measure atmespheric pressure-	Wicrometer
Microphone	Coverts sound waves into electrical vibration	William Gascoigne
Microscope	Converts sound waves into electrical signals.	Emile Berliner
Nephetometer	Used to obtain a magnified view of small objects	Zacharias Janssen
Odometer	Measures the scattering of light by particles suspended in a liquid	Theodore William Richards
Ohmmeter	An instrument attached to the wheel of a vehicle, to measure the distance travelled.	Benjamin Franklin
Ondometer	Measures electrical resistance of objects	Osvold Robert Harold
	Measures the frequency of electromagnetic waves(radio waves)	

Optometer	Used for testing the refractive power of the eye.	Dr Jules Badal
Otoscope	Used for visual examination of the eardrum.	E. Seigle
Periscope	Used to view objects above sea level (Used in submarines).	Hippolyte Marié-Davy
Phonograph	Used for reproducing sound.	Thomas Edison
Photometer	Compares the luminous intensity of the two sources of light	Dmitry Lachinov
Polygraph	It simultaneously records changed in physiological processes such as heartbeat, blood pressure \& the respiration (used as lie detector)	William Moulton Marston
Pyrheliometer	Used for measuring Solar radiation.	C. G. ABBOTT
Pyrometer	Measures very high temperature.	Josiah Wedgwood
Quadrant	Measures altitudes and angles in navigation and astronomy	John Hadley
Radar	Radio, Detection and Ranging.	Heinrich Hertz
Rain Gauge	Measures Rainfall.	King Sejong the Great
Refraetometer	Measures-satinity-of-solatiens-	Ernst Abbe
Refractometer	Measures a Refractive Index of a substance.	Carl Zeiss

Sextant	Used by navigators to find the latitude of place by measuring the elevation above the horizon of the sun or another star; also used to measure the height of very distant objects	
Sextant	Used for measuring angular distance between two objects.	John Campbell
Siesmograph	Used for recording the intensity and origin of earthquakes shocks.	John Milne
Spectroscope	Used for Spectrum analysis.	Robert Wilhelm Bunsen
Speedometer	An instrument used for measuring speed of the vehicle.	Croatian Josip Belušić in 1888

Telescope	Used for magnified view of distant objects.	Hans Lippershey
Thermometer	Measures Temperature	Galileo Galilei
Thermostat	Automatically regulates temperatures at a constant point.	Warren S. Johnson
Tonometer	Measures the pitch of a sound	John Austin
Transformer	An apparatus used for converting high voltage to low and vice-versa without change in its frequency.	Ottó Bláthy
Transponder	To receive a signal and transmit a reply immediately in satellites.	Charles M Redman
Venturimeter	Measures the rate of flow of liquids	Clemens Herschel
Vernier	Measures Small sub-division of scale.	Pierre Vernier
Viscometer	Measures Viscosity of liquid.	Edward H Zeitfuchs
Voltmeter	Used to measure electric potential difference between two points	Andrew Kay
Wattmeter	To measure electric power	Ottó Bláthy
Wavemeter	To measure the wavelength of a radiowave(high frequency waves)	Paul D Zottu

nanometers, angsiorm, prunuuu,
It is the "distance travelled by light in one year".

$$
1 \text { light year }=9.46 \times 10^{15} \mathrm{~m}
$$

An Astronomical Unit (AU) is "the mean distance from the centre of the earth to the centre of the sun".

$$
1 \mathrm{~A} . \mathrm{U}=1.495 \times 10^{11} \mathrm{~m}
$$

The closest star is more than 1 pan
A nautical mile is equal to one minute of a latitude and it is based on the circumference of the earth. This unit is used for charting and navigation.
1 nautical mile $=1.1508$ statute miles
A knot is one nautical mile per hour. ie., 1 Knot $=1.1508$ mola $\left.\right|^{h r}$

- Conversion formulas:
(i) Celsius to Fahrenheit: ${ }^{\circ} \mathrm{F}=9 / 5\left({ }^{\circ} \mathrm{C}\right)+32$
(ii) Kelvin to Fahrenheit: ${ }^{\circ} \mathrm{F}=9 / 5\left({ }^{\circ} \mathrm{K}-273\right)+32$
(iii) Fahrenheit to Celsius: ${ }^{\circ} \mathrm{C}=5 / 9\left({ }^{\circ} \mathrm{F}-32\right)$

The gravitational force with which the sun attracts the earth:
(i) is less than the force with which the earth attracts the sun.
(ii) is the same as the force with which the earth attracts the sum.
(iii) is more than the force with which the earth attracts the sun.

$$
\frac{c}{5}=\frac{F-32}{9}
$$

(iv) varies with distance between them.

Which one of the above statements is/are correct?
(a) Only 1
(b) 1 and 4
(C) 2 and 4
(d) 3 and 4

The dimensional formula for power is:
(a) $\mathrm{ML}^{2} \mathrm{~T}^{3}$
(c) $\mathrm{ML}^{2} \mathrm{~T}^{2}$
(b) MLT^{-2}
(d) $\mathrm{ML}^{2} \mathrm{~T}^{-1}$

$$
F=\frac{G M m}{r^{2}}
$$

The Avogadro's number gives the number of molecules in 1 mole of a substance and its equivalent value is:
(a) 6.00000×10^{23}
(c) 6.022045×10^{21}
(b) 6.022045×10^{23}
(d) 6.0331×10^{23}

Which two sets of physical quantities have the same SI units? Free = Mass \times accel le valín
(a) Force and weight
(b) Momentum and angular velocity _rads.
(c) Work and energy of charged capacitor
(d) a and c

$$
W a k=\mathrm{Mad}=\mathrm{kgm} / \mathrm{s}^{2} \cdot \mathrm{~m} \text {. Momentum } \quad=\mathrm{kg} \mathrm{~m}^{2} / \mathrm{s}^{2} \text {. }=\text { mass } \times \text { veloaly }=1 \mathrm{Gg} \times \mathrm{m} / \mathrm{s} .
$$

The dimensions of the quantities in the following pairs is same in the case of:
(a) Torque and work $N M \rightarrow J \quad$ Torque = Force x distance from mé pivot
(b) Angular momentum and work
(c) Energy and Young's Modulus $-\mathrm{N} / \mathrm{m}^{2}$
(d) Light year and frequency $\rightarrow \operatorname{persec}\left(\mathrm{H}_{2}\right)$

The dimensions of light year are:
(a) LT^{-2}
(c) L
(b) T
(d) MLT^{-1}

Energy per unit volume expresses:
(a) Thrust
(b) Force
(c) Work
(d) Pressure

Which of the following are not correctly matched?
(a) Force: Newton
(c) Power: Weber Watt
(b) Energy: Joule
(d) Pressure : Pascal
(a) Force: Newton
(b) Energy: Joule
(c) Power: Weber Watt
(d) Pressure : Pascal

Nano-science is based on the measuring scale of a nanometer that is equal to:
(a) 10^{-3}
(b) 10^{-12}
(c) 10^{-6}
$\begin{array}{cc}\text { (d) } & 10^{-9} \\ \cdots \\ \cdots & \cdots\end{array}$

If the distance between the earth and the sun were twice what it is now, the gravitational force exerted on the earth by the sun would be :
(a) one-fourth of what it is now
(b) four times as large as it is now
(c) half of what it is now
(d) twice as large as it is now

The branch of Physics that deals with the movement of liquid and gases:
(a) Mechanics
(b) Cryogenics
(c) Fluid Physics
Mechanis(d) Acoustics

The Indian scientist who was awarded noble prize who is famous for his contribution of Inelastic scattering of light by molecules is:
(a) C.V.Raman
(b) Abdus Salam
(c) S. Chandershekhar
(d) H.J.Bhabha

Match the following:

A

1. X-rays
2. Electron

B

3. Wave Nature of Matter C. W. K. Roentgen
4. Wave Theory of light -D . Christian Huygens
(a) 1-A, 2-C, 3-B,4-D
(b) 1-C, 2-B, 3-A,4-D
(c) 1-B, 2-C, 3-A,4-D
(d) 1-C, 2-A, 3-B,4-D

Astronomical unit is the unit of:
(a) time
(b) distance
(c) mass
(d) acceleration

Einstein got his noble prize for: $\mathbb{K}_{\boldsymbol{\prime}}=\mathrm{Mc}^{2}$
(a) theory of relativity
(b) existence of neutrons
(c) gravitational law
(d) none of the above

The Navy uses this technique that is used to detect the submarines in oceans:
(a) Periscope
(b) Radar lañ
(c)' SONAR
(d) Telescope $>$

A unit less quantity:
(a) never has a non zero dimension
(b) always has a non zero dimension
(c) may have a non zero dimension
(d) does not exist

One Horse-power is equal to:
(a) 846 W
(b) 724 W
(c) 964 W
(d) 746 W

Which of the cote riven hata..
(a) 840 W
(b) 724 W
(c) 964 W
(d) 746 W

Which of the sets given below may represent the magnitudes of three vectors adding to zero?
(a) $4,8,16$
(b) $2,4,8$
(c) $1,2,1$
(d) $0.5,1,2$

Consider the following statements:

1. Amercury thermometeruses mercury as it expands quickly with a rise in temperature and it freezes at $-39^{\circ} \mathrm{C}$.
2. Alcohol is appropriate to be used as the liquid in thermometers in countries with low temperatures.
Which of the above statements is /are correct?
(a) Only 1
(b) Only 2
(c) Both 1 and 2
(d) Neither 1 nor 2

Given below are the two columns:
A
B

1. Mercury thermometer (i) $-250^{\circ} \mathrm{C}$ to $850^{\circ} \mathrm{C}$
2. Electrical resistance (ii) $35^{\circ} \mathrm{C}$ to $42^{\circ} \mathrm{C}$ thermometer
3. Pyrometers (iii) $-35^{\circ} \mathrm{C}$ to $356^{\circ} \mathrm{C}$
4. Clinical thermometer (iv) $-40^{\circ} \mathrm{C}$ to $3500^{\circ} \mathrm{C}$ '

Select the proper codes to give the correct answer:
(a) 1-i, 2-iv, 3-ii, 4-iii
(b) 1-iii, 2-i, 3-iv, 4-ii
(c) 1-i, 2-iii, 3-ii, 4-iv
(d) 1-i, 2-iv, 3-ii, 4-iii

Consider the following statements about a mercury in glass thermometer:

1. Mercury used is a liquid metal and has high density.
2. Mercury is opaque and shiny and does not stick to the walls of the thermometer.
3. It can temperatures in the range of $-35^{\circ} \mathrm{C}$ to $356^{\circ} \mathrm{C}$.
4. It can be used in cold countries as Hg freezes at $-39^{\circ} \mathrm{C}$.

Which of the above statements is/are correct?
(a) Only 3 and 4
(b) Only 2
(c) 1,2 and 3
(d) Only 4

Consider the following statements:

1. The human body maintains a normal temperature of $37^{\circ} \mathrm{C}$ even when the atmospheric temperature is higher.
2. Evaporation of sweat helps in cooling.

Which of the above statements is /are correct?
(a) Both 1 and 2
(b) Neither 1 nor 2
(c) Only 1
(d) Only 2

The science dealing with the study of physical events at very low temperatures is known as:
(a) Refrigenics
(b) Cytogenics
(c) Frozenics
(d) Cryogenics

The temperature of the top of a frozen lake is $-15^{\circ} \mathrm{C}$. What is the temperature of the water in the lake in contact with the ice layer?
(a) $0^{\circ} \mathrm{C}$
(b) $4^{\circ} \mathrm{C}$
(c) $-15^{\circ} \mathrm{C}$
(d) $-7.5^{\circ} \mathrm{C}$

Consider the following statements:

1. An ordinary bulb has a filament made up of tungsten and dit is filled with argon gas.
2. Heat from the filament is transmitted by radiation.

Which of the above statements is/are correct?
(a) Both 1 and 2
(b) Neither 1 nor 2
(c) Only 1
(d) Only 2

The quantity of water vapour that the atmosphere can hold:
(a) is independent of temperature
(b) increases with increase of temperature
(c) decreases with increase of temperature
(d) fluctuates with increase of temperature.

It takes much longer time to cook things in the mountains than in the plains because:
(a) Due to low atmospheric pressure in the hills, the boiling point of water rises and therefore water takes longer to boil.
(b) In the hills, the atmospheric temperature is low and therefore a lot of heat is lost to the atmosphere.
(c) In the hills the atmospheric pressure is lower than that in plains and therefore water boils at lower temperature.
(d) In the hills, the humid atmosphere absorbs a lot of heat, leaving very little for the cooking.
A dilatometer is an instrument used to measure:
(a) the relative density of liquids
(b) the purity of milk
(c) relative humidity
(d) anomalous expansion of water

Which of the following statements is incorrect?
(a) A solar cooker uses glass to focus the sun's radiations.
(b) A solar cooker is convex in nature.
(c) A glass absorbs the ultra violet radiations and radiates back the infra red rays.
(d) A body that absorbs all the radiation falling on it is called a black body radiation.
Consider the following statements:

1. Ether if falls on our skin burns it
2. Ether if falls on our skin causes cooling sensation
3. Ether is volatile and on absorbing heat from our body evaporates
Which of the above statements is/are correct?
(a) 1 and 2
(b) 2 and 3
(c) Only 1
(d) All of the above

Food is cooked faster in a pressure cooker because:
(a) heat cannot escape from the cooker
(b) steam is hotter than the boiling water
(c) due to high pressure, the boiling point of water is raised.
(d) in the cooker water starts boiling at a lower temperature.

Cryogenic engines find application in:
(a) space travel, surgery and magnetic levitation
(b) surgery, magnetic levitation and telemetry
(c) space travel, surgery and telemetry
(d) space travel, magnetic levitation and telemetry

Consider the following statements:

1. A cloudy night is warmer than a clear night sky because the heat radiated from the earth is reflected by the clouds back to the earth.
2. The IR radiations are responsible for heating effects and are radiated out by all objects at all the temperatures.
Which of the above statements is/are correct?
(a) 1 and 2
(b) Only 2
(c) Only 1
(d) All of the above

Consider the following statements:

1. Radio signals can be received anywhere on the earth.
2. Radiowaves are able to penetrate the ionosphere.

Which of the above statements is /are correct?
(a) 1 and 2
(b) Only 2
(c) Only 1
(d) All of the above

Why does the radio reception improve slightly during the night?
(a) The outside noise is reduced at night.
(b) Unlike the daytime, only few radio stations broadcast during the night.
(c) Sunlight affects radio broadcast to some extent during the day.
(d) The magnetic field of the earth acts with reduced intensity during the night, thereby reducing its impact on broadcasts.
Which of the under given statement(s) is /are incorrect?
(a) The thermal conductivity of oils and pure metals decreases with rise of temperature.
(b) The thermal conductivity of alloys and water increases with rise of temperature.
(c) Hot water takes lesser time to cool down from $80^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ than in cooling from $30^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$.
(d) A thermos flask has double walls and vacuum that prevents heat loss by conduction.

We see the lightning first and hear the thundering later because:
(a) light is composed of photons and they are highly energetic and luminescent.
(b) light travels at a speed of $186,000 \mathrm{miles} / \mathrm{sec}$.
(c) light can travel through the clouds easily whereas sound gets obstructed by the moisture content.
(d) None of the above

Consider the following statements:

1. A plane mirror produces an image that is erect, real and forms behind the mirror at the same distance as the object is in front of it.
2. The convex lens is used at the blind curves in mountain. Which of the above statements is/are correct?
(a) Only 1
(b) Only 2
(c) Both 1 and 2
(d) Neither 1 nor 2

The twinkling of stars is attributed to:
(a) Reflection of light by the earth
(b) Refraction from the air
(c) Extremely large distances between earth and the stars
(d) The composition of stars includes radium that makes it shine

Given below are the two columns:

		B
1. Rainbow in the sky	(i)	Diffraction
2. Rainbow pattern on CD	(ii)	Scattering
3. Rainbow colours in thin oil films(iii)	dispersion	
4. Blue colour of the sky	(iv) interference	

Select the proper codes to give the correct answer:
(a) 1-iv, 2-ii, 3-iii, 4-i
(b) 1-iv, 2-i, 3-iii, 4-ii
(c) 1-i, 2-iii, 3-ii, 4-vi
(d) 1-iii, 2-i, 3-iv, 4-ii

In the following list of colours:

1. Blue 2.
Green
2. Red 4.
Yellow

Which are the three primary colours?
(a) 1,2, and 3
(b) 1,2 and 4
(c) 2,3 and 4
(d) 1,3 and 4

The dyer wishes to dye the cloth in magenta colour. He should
make the following mix of colours:
(a) Red+Green
(b) Red + Blue
(c) Blue + Green
(d) Red + Cyan

The accommodation of the eye is produced by:
(a) Change in the size of the pupil
(b) Contraction of the iris
(c) The ciliary muscles
(d) The forward movement of the retina

When a person enters a dark room from bright light, he/she is not able to see clearly for a little while because the:
(a) eye is unable to adjust itself immediately
(b) retina becomes insensitive momentarily
(c) iris is unable to dilate the pupil immediately
(d) distance between the lens and retina takes time to adjust

The bats are able to move freely in a dark room without colliding with the walls because:

1. they have sensory organs to detect the UV radiations
2. they emit ultrasonics and use them for navigating
Which of the above statements is/are correct?
(a) Only 1
(b) Only 2
(c) Both1 and 2
(d) None of the two
A speeding vehicle is monitored by:
(a) Doppler radar
(b) Doppler laser
(c) Doppler fibre
(d) LIDAR

A device used for controlling the temperature is:
(a) Thermistor
(b) Thermometer
(c) Thermapp
(d) Thermostat

Given below are the two columns:

A

1. Dynamo
2. Generator
3. Inverter
4. Transformer

B

(i) Mechanical energy to electrical energy
(ii) Converts DC to AC
(iii) Electrical energy to mechanical energy
(iv) Alters the voltages
Select the proper codes to give the correct answer:
(a) 1-iii, 2-i, 3-ii, 4-iv
(b) 1-v, 2-i, 3-iii, 4-ii
(c) 1-i, 2-iii, 3-ii, 4-iv
(d) 1-v, 2-iv, 3-ii, 4-iii

Which of the following is mostly commonly used semiconductor
in solar power generation?
(a) Silicon
(b) Germanium
(c) Antimony
(d) Rhodium

110sane made up of substances like:
(a) Silicon
(b) Gallium, Indium chloride
(c) Gallium, indium phosphide
(d) Gallium, Tellurium

A compact fluorescent lamp is most recommended in the "Go Green`scheme because:
(i) No waste ofelectric energy takes place
(ii) Amount of UV produced is much lesser than present in daylight.
(iii) Does not contribute to global warming

Select the proper code to give the correct answer:
(a) Only I
(b) ii and iii
(c) iand iii
(d) All of the above

Which one of the statements given below is incorrect?
(a) Connecting a number of electrical appliances a socket is advisable to save electrical energy.
(b) Overloading is a condition in which the current flowing through an appliance exceeds the rating of the protective devices.
(c) Flickering lights are an indication of overloading
(d) During overloading the current flowing through an aplliance exceeds the over rating of the appliance

During a short circuit:
(a) the live wire and the neutral wire come in contact with each other
(b) the resistance of the circuit becomes infinity
(c) a small current flows to cause heating effect
(d) it occurs between earthing and the live wires.

In India the electric current is transmitted in the following pairing:
(a) 120 V and 50 Hz
(b) 220 V and 60 Hz
(c) 220 V and 50 Hz
(d) 120 V and 60 Hz

These days walls are painted with a special type of paint in which iron dust is added because:

1. magnet can stick to these walls
2. iron is a ferromagnetic material
3. iron produces smoothening effect in the finishing

Select the proper code to give the correct answer (s):
(a) Only 1
(b) 2 and 3
(c) 1 and 2
(d) All of the above

If the current flowing through a heater coil is doubled the heat produced will becomes:
(a) double
(b) thrice
(b) becomehalf
(d) four times

Earth exhibits the properties of a bar magnet. It is because:
(a) The motion of the charges (ions and electrons) in the outer core of the earth creates the magnetic field.
(b) There is a pseudo bar magnet inside the core of the earth
(c) Earth's rotation along its axis contributes to the magnetic properties
(d) Domains of magnets exist in the core of the earth

A magnetometer measures
(a) the earth's magnetic field
(b) field declination and field inclination
(c) strength of the magnet
(d) orientation of the magnets with respect to the earth

Read the following statement about the earth's magnetism and select the correct answer using the proper codes:

1. The earth's magnetic field saves the earth from the solar winds that can completely deplete the ozone layer.
2. It attracts the celestial objects like meteors.
3. It supports the motion of artificial satellites for communication.
Codes:
(a) Only 1
(b) land 3
(c) 2 and 3
(d) All of the above

Given below are the two columns:

A

B

1. Electric filament in bulbs
(i) aluminium
2. Filament in room heaters
(ii) tungsten
3. Wire in the fuse
(iii) nichrome
4. Wires in solar panels
(iv) silver

Select the proper codes to give the correct answer:
(a) 1-iii, 2-i, 3-ii, 4-iv
(b) 1-v, 2-i, 3-iii, 4-ii
(c) 1-ii, 2-iii, 3-i, 4-iv
(d) 1-v, 2-iv, 3-ii, 4-iii

One should not connect a number of electrical appliances to the same power socket because:

1. this can damage the appliance
2. this can damage the domestic wiring due to over heating
3. the appliances will not receive complete voltage

Which of the above is / are correct reasons?
(a) Only 2
(b) Only 3
(b) 1 and 2
(d) 2 and 3

In our houses we get 220 VAC . The value 220 represents:
(a) constant voltage
(b) effective voltage
(c) average voltage
(d) peak voltage

