$$
\begin{aligned}
& f(x+(B)=f(x) \leftarrow \\
& b \text { Pend }
\end{aligned}
$$

$f(x+1)+f(x-1)=\sqrt{3} f(x)$ for all $x \in R$.
Then, period of $f(x)$ is
(d) 4

$$
\begin{aligned}
& x \rightarrow x+1 \quad f(x+2)+f(x)=\sqrt{3} f(x+1) \\
& x \rightarrow x-1 \quad f(x)+f(x-2)=\sqrt{3} f(x-1) \\
& 2 f(x)+f(x+2)+f(x-2)=\sqrt{3}(f(x+1)+f(x-1))=\sqrt{3} \sqrt{3} f(x) \\
& =3 f(x) \\
& f(x)=f(x+2)+f(x-2) \\
& x \rightarrow x+2 \quad f(x+2)=f(x+4)+f(x) \\
& f(x)+f(x+2)=f(x+2)+f(x-2)+f(x+4)+f(x) \\
& f(x+4)+f(x-2)=0 \text {. } \\
& \begin{array}{c}
f(x-2)=-f(x+4) \\
f(x)=-f(x+6) \quad f(x+6)=-f(x) \\
f(x+6)=-f(x+12)
\end{array} \\
& x \rightarrow x+2 \\
& x \rightarrow x+6 \text {. } \\
& \begin{aligned}
-f(x) & =-f(x+12) \\
f(x) & =f(x+12) \quad T=12
\end{aligned}
\end{aligned}
$$

ILLUSTRATION 5 The period of the function

$f(x)=|\sin x|-|\cos x|$, is
(a) $\pi / 2$
(b) π
(c) 2π
(d) none of these

$$
\begin{aligned}
f(x) & =f(x+T) \\
& =|\sin (x+T)|-|\cos (x+T)|
\end{aligned}
$$

$$
\begin{aligned}
& |\operatorname{sen}(x+\pi)|-|\cos (x+\pi)| \\
& =|\sin x|-|\cos x|
\end{aligned}
$$

ILLUSTRATION 6 The period of the function
$f(x)=||\sin x|-|\cos x||$, is
(a) $\frac{\pi}{2}$
(b) π
(c) 2π
(d) none of these

$$
\begin{array}{r}
f(x)=\sin x-\cos x . \\
T=2 \pi
\end{array}
$$

$$
f(x)=|\sin x|-|\cos x|
$$

$$
T=\pi
$$

ILLUSTRATION 7 If the function $f(x)=\sin x+\cos a x$ is periodic, then
(a) $a \in Z$
(b) $a \in N$
(c) $a \in Q$
(d) $a \in R$

$$
a \sin x+b \cos x
$$

$$
=\sqrt{a^{2}+b^{2}}\left[\frac{a}{\sqrt{a^{2}+b^{2}}} \sin x+\frac{b}{\sqrt{a^{2}+b^{2}}} \cos x\right]
$$

$$
b \geqslant \frac{\sqrt{a^{2}+b^{2}}}{\theta t>}
$$

$$
\cos \theta=\frac{a}{\sqrt{n^{2}+h^{2}}} \quad \sin \theta=\frac{b}{\sqrt{a^{2}+b^{2}}}
$$

$$
\begin{aligned}
& \sin x= \\
& \frac{\sin (x+2 n \pi) \quad \cos x=\cos (x+2 n \pi)}{\sqrt{\sin x+\cos x} \rightarrow \sin (x+2 n \pi)+\cos (x+2 n \pi)} \\
& \sqrt{2} \rightarrow \frac{\sin \left(x+\frac{\pi}{4}\right)}{\sqrt{a^{2}+b^{2}}} \sim \sin \pi \\
& \sin \theta+\cos x=\sin x+\sin \left(\frac{\pi}{2}-3 x\right)
\end{aligned}
$$

$$
=\frac{\operatorname{CCM}(\text { Necm })}{\text { HCF (den) }}
$$

$$
T=\frac{2 \pi}{a} \quad T=\frac{2 \pi}{b}
$$

$$
\begin{aligned}
& b \sqrt{\theta} \frac{\sqrt{a^{2}+b^{2}}}{a} \\
& \cos \theta=\frac{a}{\sqrt{a^{2}+b^{2}}} \quad \sin \theta=\frac{b}{\sqrt{a^{2}+b^{2}}} \\
& 4 \\
& =\sqrt{a^{2}+b^{2}} \sin (x+\theta) \\
& \cos (\theta)=\cos (-\theta) \\
& \sin x+\cos x=\sin x+\sin \left(\frac{\pi}{2}-3 x\right) \\
& \sin x+\cos 2 x \text {. } \\
& \operatorname{Sin} x \rightarrow \text { Tine penod }=2 \pi \text {. } \\
& 2 \cdot \frac{1}{\sqrt{2}} \sin \left[\frac{\pi}{2}-\left(\frac{\pi}{4}-x\right)\right] \\
& \begin{aligned}
\cos a x & \rightarrow \text { Tune pen } \\
m \frac{2 \pi}{a} & =n 2 \pi .
\end{aligned} \\
& =2 \sin \frac{\pi}{4} \cos \left(x-\frac{\pi}{4}\right) \\
& =2 \sin \frac{\pi}{4} \cos \left(\frac{\pi}{4}-x\right) \\
& \text { cos (2) } \frac{\pi}{k}=\frac{2 \pi}{2}=\pi \quad \cos a x \rightarrow \text { Tune penio }=\frac{2 \pi}{a} . \\
& m \frac{2 \pi}{a}=n 2 \pi \cdot a=a=\frac{m}{n} \\
& \text { Combenes temeperia } \\
& \sin a x+\cos b x \text {. } \\
& \cos a x \rightarrow T=\frac{2 \pi}{a} . \quad m \frac{2 \pi}{a}=n 2 x t \\
& R=\frac{m}{n} \rightarrow \text { Rational }
\end{aligned}
$$

