Variable: Height of an individual in a class room 10 Sorudenss.
fixed

Random Variable:
Probability is assreiated with it. alt possible rutan the set of all possible outcous ore known. it has a distriturution.
(X:) No. of heads stained in 2 tosses of an unbiased coin.

E: Tossing 2 coins \longrightarrow Experiment

$$
\Omega=\{H H, H T, T H, T T\}
$$

$$
x=\left\{\begin{array}{lll}
0 & \omega \cdot p \frac{1}{4} & \text { Total probalmility } \\
1 & \omega \cdot p \frac{1}{4}+\frac{1}{4} & =\frac{1}{4}+\left(\frac{1}{4}+\frac{1}{4}\right)+\frac{1}{4} \\
2 & \omega \cdot p \frac{1}{4} & 21
\end{array}\right.
$$

Discrete Rr (Distribution: pouf)
classification Continuous $\operatorname{Rr}($ Distribution: \mid pf)

Properties of Probatallity Distribution:
For any discrete $r \cdot v x$,
$f(x)=\underset{\bar{J}}{\underset{V}{L}} \underset{\sim}{x}=(x)=$ probability mass function of x
$\left.\begin{array}{l}\text { i) } f(x) \geqslant 0 \quad f x \\ \text { ii) } \sum_{x} f(x)=1\end{array}\right\}$
eg: 1

$$
\begin{aligned}
& x \sim \sin (n, p) \\
& f(x)=\left\{\begin{array}{l}
\binom{n}{x} b^{x} q^{n-x}, \quad x=0,1, \ldots, n \\
0
\end{array}, 0, \infty\right.
\end{aligned}
$$

where, $0<p<1$ and $p+q=1$
check whether $f(x)$ in really a furf or nut.
Ans: clearly $f(x) \geqslant 0 \quad f x=0,1, \ldots, n$.

$$
\begin{aligned}
\sum_{x} f(x) & =\sum_{x=0}^{n}\binom{n}{a} p^{x} q^{n-x} \\
& =\binom{n}{0} p^{0} q^{n-0}+\binom{n}{1} p^{1} q^{n-1}+\binom{n}{2} p^{2} q^{n-2}
\end{aligned}
$$

$$
\begin{aligned}
&=\binom{n}{0} p^{0} q^{n-0}+\binom{n}{1} p^{1} q^{n-1}+\binom{n}{2} p^{2} q^{n-2} \\
& \quad+\cdots+\binom{n}{n} p^{n} q^{n-n} \\
&= q^{n}+\binom{n}{1} p^{1} q^{n-1}+\binom{n}{2} p^{2} q^{n-2}+\cdots+p^{n} \\
&=(q+p)^{n}=(1)^{n}=1
\end{aligned}
$$

2) Three balls are drawn at random from a bag containing (5) white and (3)black balls. If x denote the no. of white balls drawn,
(1) (Write down the probability distritoution) If x^{2}. (Verify whether it is really a font or $n \circ)$. (Also obtain $E(x)$ and $v(x))^{3}$
 x : The no, of white balls drown.
ont of Balls 3 balls are randomly selected

$$
\frac{x=0,1,2,3}{P(x=0)=\frac{\binom{3}{3}}{\binom{8}{3}}=\frac{1}{56} .}
$$

None of the

None of the
white ball is

$$
\begin{aligned}
& P(x=1)=\frac{\binom{5}{1} \times\binom{ 3}{2}}{\binom{8}{3}}=\frac{15}{56}
\end{aligned}
$$ is chosen

$T(x=2)=\frac{\binom{5}{2} \times\binom{ 3}{1}}{\binom{8}{3}}=\frac{30}{56}$ are chosen

$$
\begin{aligned}
& \text { chosen } \\
& P(x=3)
\end{aligned}=\frac{\binom{5}{3}}{\binom{8}{3}}=\frac{10}{56}
$$

An the balk
are white.
\therefore The probability distribution of x is given by

$$
x=\left\{\begin{array}{ccc}
0 & \omega \cdot \beta & 1 / 56 \\
1 & \omega \cdot \beta & 15 / 56 \\
2 & \omega \cdot p & 30 / 56 \\
3 & \omega \cdot p & 10 / 56
\end{array}\right.
$$

$$
\begin{aligned}
& f(0)=P(x=0)=\frac{1}{56}>0 \\
& f(1)=P(x=1)=15 / 56>0
\end{aligned}
$$

$$
\begin{aligned}
& f(1)=P(x=1)=15 / 56>0 \\
& f(2)=P(x=2)=30 / 56>0 \\
& f(3)=P(x=3)=10 / 56>0 \\
& \sum_{x} f(x)=\sum_{x=0}^{3} \\
&=f(0)+f(1)+f(2)+f(3) \\
&=\frac{1}{56}+\frac{15}{56}+\frac{30}{56}+\frac{10}{56} \\
&=1
\end{aligned}
$$

Yes, it ri' a pouf.

$$
\begin{aligned}
& E(x)=\sum_{x} x f(x)=\sum_{x=0}^{3} x f(x) \\
& =0 \cdot f(0)+1 \cdot f(1)+2 \cdot f(2)+3 \cdot f(3) \\
& =0+\frac{15}{56}+2 \times \frac{30}{56}+3 \times \frac{10}{56} \\
& =\frac{15+60+30}{56}=15 / 8=1 \frac{7}{8} . \\
& \begin{aligned}
E\left(x^{2}\right)=\sum_{x=0}^{3} x^{2} f(x)=0^{2} \times f(0)+1^{2} \times f(1) & +2^{2} \times f(2) \\
& +3^{2} \times f(3)
\end{aligned} \\
& =0+1 \times \frac{15}{56}+4 \times \frac{30}{56}+9 \times \frac{10}{56} \\
& =\frac{225}{n-r}
\end{aligned}
$$

$$
\begin{gathered}
=\frac{225}{56} \\
V(x)=E\left(x^{2}\right)-E^{2}(x)=\frac{225}{448} .
\end{gathered}
$$

For any Continuous rr x, the p of in given by y, $f(x)$, which in called probability dennoty function.
Properties: i) $f(x) \geqslant 0$ \&
2) $\int_{x} f(x) d x=1$.
$\operatorname{eg}\left(1 \quad x \sim \operatorname{Exp}\left(\operatorname{mean}=\frac{1}{\lambda}\right)\right.$.
Check, $f(x)=\lambda e^{-\lambda x}, x>0$ in a polfornt.
An: Clearly, $f(x) \geqslant 0 \quad f x>0$

$$
\begin{array}{rlr}
\int_{x} f(x) d x & =\int_{0}^{\infty} \lambda e^{-\lambda x} d x & \\
& =\lambda x=p \\
& \int_{0}^{\infty} e^{-p} \frac{d p}{\lambda} & \Rightarrow \lambda d x=d p \\
& =\int_{0}^{\infty} e^{-p} d p
\end{array}
$$

$$
\begin{aligned}
& -\int_{0} e^{r} d p \\
= & {\left[-e^{-p}\right]_{0}^{\infty}=-(0-1)=1 }
\end{aligned}
$$

2) Consider, $f(x)=\left\{\begin{array}{cc}k x, & 0<x \leqslant 1 \\ 4-2 x, & 1<x \leqslant 2 \\ 0, & 0.0 .\end{array}\right.$
a) Find K
b) Find $E(x)$ and $V(x)$.

Ans: $\int_{x} f(x) d x=1$

$$
\begin{aligned}
& \Rightarrow 1=\int_{0}^{1} 2 x d x+\int_{1}^{2}(4-2 x) d x \\
& \Rightarrow 1=k\left[\frac{x^{2}}{2}\right]_{0}^{1}+4[x]_{1}^{2}-2\left[\frac{x^{2}}{2}\right]_{1}^{2} \\
& \Rightarrow 1=(1-0) k+4(2-1)-(4-1) \\
& \Rightarrow 1=k+4-3 \\
& \Rightarrow k+1=1
\end{aligned}
$$

$$
\Rightarrow \quad k=0
$$

Now, $f(x)=\left\{\begin{array}{cl}0, x, & 0<x<1 \\ 4-2 x, & 1<x<2 \\ 0, & 0 . \omega\end{array}\right.$

$$
=\left\{\begin{array}{cl}
4-2 x, & 1<x<2 \\
0, & 0,0
\end{array}\right.
$$

Now,

$$
\begin{aligned}
\int_{x} f(x) d x=\int_{1}^{2}(4-2 x) d x & =4[x]_{1}^{2}-2\left[\frac{x^{2}}{2}\right]_{1}^{2} \\
& =4(2-1)-(4-1) \\
& =4-3=1
\end{aligned}
$$

Lance, for $k=0$, if in a body.

$$
\begin{aligned}
& E(x)=\int_{1}^{2} x f(x) d x=\int_{2}^{2} x(4-2 x) d x \\
& E\left(x^{2}\right)=\int_{1}^{1} x^{2} f(x) d x=\int_{1}^{2} x^{2}(4-2 x) d x \\
& \therefore V(x)=E\left(x^{2}\right)-E^{2}(x) .
\end{aligned}
$$

