Compute real and imaginary part of $z=\frac{i-4}{2 i-3}$.

$$
\begin{aligned}
& z=\frac{(i-4)}{(2 i-3)} \frac{(2 i+3)}{(2 i+3)}=\frac{2 i^{2}-5 i-12}{4 i^{2}-9}=\frac{-14-5 i}{-13} \\
& \quad z=\left(\frac{14}{13}\right)+\left(\frac{5}{13}\right) i
\end{aligned}
$$

Write in the "trigonometric" form $(\rho(\cos \theta+i \sin \theta))$ the following complex numbers

$$
\begin{aligned}
&\left(\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}\right)^{7} . i b \rightarrow r \operatorname{cis} \theta \\
& r=\sqrt{a^{2}+b^{2}} \quad \theta=\tan ^{-1}\left(\frac{b}{a}\right) \\
& r=\sqrt{2} \cdot \tan \theta=\frac{-\operatorname{sen} \pi / 3}{\cos \pi / 3}=\tan \left(-\frac{\pi}{3}\right) \quad \theta=-\frac{\pi}{3} \\
& \operatorname{tve} \\
& 4 \ln Q . \quad {\left[\sqrt{2} e^{i(-\pi / 3)}\right]^{7} } \\
&=(\sqrt{2})^{7} e^{i\left(-\frac{7 \pi}{3}\right)} \\
&=8 \sqrt{2}\left[\cos \left(\frac{7 \pi}{3}\right)-i \sin \left(\frac{7 \pi}{3}\right)\right] \\
&=8 \sqrt{2}\left[\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}\right]
\end{aligned}
$$

Find $z \in \mathbb{C}$ such that

$$
|z+3 i|=3|z| . \quad z=a+b i
$$

$$
\begin{array}{ll}
z+3 i=a+(b+3) i & |z|=\sqrt{a^{2}+b^{2}} \\
|z+3 i|=\sqrt{a^{2}+(b+3)^{2}} & \sqrt{a^{2}+(b+3)^{2}}=3 \sqrt{a^{2}+b^{2}} \\
& a^{2}+(b+3)^{2}=9 a^{2}+9 b^{2}
\end{array}
$$

$$
\begin{aligned}
& |z+3|=\sqrt{ } a^{-}+(b+3) \\
& a= \pm \frac{\sqrt{(3+4 b)(3-2 b)}}{2 \sqrt{2}} \\
& |z+3 i| \Rightarrow \text { Circle corth } \\
& \text { conter (0,-3) } \\
& V a^{2}+(b+3)^{-} \text {- -vN.. } \\
& a^{2}+(b+3)^{2}=9 a^{2}+9 b^{2} \\
& 8 a^{2}=b^{2}+6 b+9-9 b^{2} \\
& 8 a^{2}=9+6 b-8 b^{2} \\
& =9+12 b-6 b-8 b^{2} \\
& =3(3+4 b)-2 b(3+4 b) \\
& =(3+4 b)(3-2 b) \\
& \text { and radins } \\
& r^{2}+6 r \sin \theta+9=9 r^{2} . \\
& \begin{array}{l}
8 r^{2}-6 r \sin \theta-9=0 \\
r=\frac{6 \sin \theta \pm \sqrt{36 \sin ^{2} \theta+288}}{16}
\end{array} \\
& \begin{array}{l}
8 r^{2}-6 r \sin \theta-9=0 \\
r=\frac{6 \sin \theta \pm \sqrt{36 \sin ^{2} \theta+288}}{16}
\end{array} \\
& z=r e^{i \theta} \\
& \begin{aligned}
& z=r e \\
& z+3 i=r e^{i \theta}+3 i=r(\cos \theta+i \sin \theta)+3 i \\
&=r \cos \theta+(r \sin \theta+3) i
\end{aligned} \\
& \begin{aligned}
z+3 i=r e^{i \theta}+3 i & =r(\cos \theta+i \operatorname{sen} \theta)+3 i \\
& =r \cos \theta+(r \sin \theta+3) i
\end{aligned} \\
& |z+3 i|=\sqrt{r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta+6 r \sin \theta+9}=\sqrt{r^{2}+6 r \sin \theta+9} \\
& 3 z=3 r(\cos \theta+i \sin \theta) \\
& 3|z|=3 r \\
& z=r e^{i \theta}=\left(\frac{3 \sin \theta}{8} \pm \frac{3 \sqrt{\sin ^{2} \theta+8}}{8}\right) e^{i \theta} \quad 0 \leqslant \theta \leqslant 2 \pi \\
& |z+3 i| \\
& z=x+i y \text {. } \\
& z+3 i=x+(y+3) i- \\
& |z+3 i|=\sqrt{x^{2}+(y+3)^{2}}=r \text {. } \\
& \begin{array}{l}
z=r e^{i \theta}=\left(\frac{3 \sin \theta}{8} \pm 3 \sqrt{8} \quad z=\gamma e^{i \theta .}\right. \\
z=(2+i)^{(1-i)}
\end{array} \\
& \text { form } z=z_{1} z_{2},(a+b i) \\
& x^{a}=e^{\ln x^{a}} . \\
& (\sqrt{5})^{i}=e^{\ln \cdot(\sqrt{5})^{i}}=e^{i(\ln \sqrt{5})} \\
& \begin{aligned}
z & =\left[\sqrt{5} e^{i \tan ^{-1}\left(\frac{1}{2}\right)}\right]^{(1-i)} \\
& =(\sqrt{5})^{1-i} \cdot e^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{2}\right)
\end{aligned} \\
& =(\sqrt{5})^{1-i} e^{0.46+0.46 i} \\
& =(\sqrt{5})^{1-i} e^{0.46} \cdot e^{0.46 i} \\
& =\frac{\sqrt{5}}{(\sqrt{5})^{i}} e^{0.46}[\cos 0.46+i \sin 0.46] \\
& \sqrt{5} e^{0.46} e^{i 0.46}
\end{aligned}
$$

$$
\begin{aligned}
& (\sqrt{5})^{i} \\
= & \frac{\sqrt{5} e^{0.46}}{e^{i \ln \sqrt{5}}} e^{i 0.46} \\
= & \sqrt{5} e^{0.46} e^{i(0.46-\ln \sqrt{5})} \\
= & \sqrt{5} e^{0.46} e^{i(-0.35)}
\end{aligned}
$$

$$
R e=\sqrt{5} e^{0.46} \cos 0.35
$$

$$
I_{m}=-\sqrt{5} e^{0.46} \sin 0.35
$$

Rotalion of complex nos.
$z=a+b^{i} \rightarrow$ sotate by 90° clocleursi arouns hè on'gin

$$
z^{\prime}=b-a i
$$

rotalé 90° anticlocleurse $z^{\prime}=-b+a i$
$Z=1+i$ rofate by 60° clockurse.

Ssepl $\tan \theta=\frac{m_{2}-m_{1}}{1+m_{1} m_{2}} \quad \operatorname{sinpe}=\tan \left(-15^{\circ}\right)$
slep 2.

$$
a^{2}+b^{2}=r^{2}
$$

$$
z^{2} \bar{z}+\bar{z}^{2} z=0
$$

$$
z^{2} \bar{z}+\bar{z}^{2} z=0
$$

