Trigonometry sin z ...
$$z \rightarrow ?$$

Wednesdy MM 17.2023 12.00 PM $\frac{1}{150} = \frac{1}{1}$ $\frac{1}{20} = \frac{1}{120}$
 $\frac{1}{120} + \frac{1}{120} = \frac{1}{120}$ $\frac{1}{120} + \frac{1}{120} + \frac{1}{120} = \frac{1}{120}$
 $\frac{1}{120} + \frac{1}{120} = \frac{1}{120}$ $\frac{1}{120} + \frac{1}{120} + \frac{1}{120} = \frac{1}{120}$
 $\frac{1}{120} + \frac{1}{120} = \frac{1}{120}$ $\frac{1}{120} + \frac{1}{120} + \frac{1}{120} = \frac{1}{120}$
 $\frac{1}{120} + \frac{1}{120} = \frac{1}{120}$ $\frac{1}{120} + \frac{1}{120} + \frac{1}{120} + \frac{1}{120}$
 $\frac{1}{120} + \frac{1}{120} = \frac{1}{120}$ $\frac{1}{120} + \frac{1}{120} + \frac{1}{120} + \frac{1}{120}$
 $\frac{1}{120} + \frac{1}{120} +$

Logarithm
Thursday, May 25, 2023 2.00 PM (1)
$$\log_{2} a = 1$$
 (2) $\log_{2} a! = 0$
(3) $\log_{2} a \cdot \log_{2} a$ (at $\log_{1} a = x \Rightarrow b^{X} : a$
 $\log_{2} a^{X} = 1 - 6$ (sing in $A \to x \log_{2} a = 1$
(4) $\log_{2} a^{X} = 2 \log_{2} a$ (sing in $A \to x \log_{2} b = 1$
(5) $\log_{1} a = \log_{1} c \cdot \log_{2} a$ (base changing formula)
(6) $\log_{4} b = \log_{4} c \cdot \log_{4} a$ (7) $\log_{4} (b) = \log_{4} b - \log_{4} c$
(8) $\log_{4} b = \frac{1}{9} \log_{4} b$ (9) Combining 128 $\log_{4} b^{2} - \frac{9}{9} \log_{4} b$
(10) $a^{\log_{4} b} = \frac{1}{9} \log_{4} b$ (9) Combining 128 $\log_{4} b^{2} - \frac{9}{9} \log_{4} b$
(10) $a^{\log_{4} b} = b$ $\log_{4} b = x + \log_{4} a$
(11) $\log_{4} a \to \log_{4} a$, $(n a \to \log_{4} a)$
(12) $\sqrt{34} = 8$ (2) $(2\sqrt{2})^{-\sqrt{3}} = \sqrt{2}$ (2) $(2\sqrt{2})^{-\sqrt{3}} = \sqrt{2} - 1$
 $\log_{2} \sqrt{34} = \log_{2} a$ (2) $(2\sqrt{2})^{-\sqrt{3}} = \sqrt{2} - 1$
 $\log_{2} \sqrt{34} = \log_{2} a$ (2) $(2\sqrt{2})^{-\sqrt{3}} = \sqrt{2} - 1$
 $\log_{2} \sqrt{34} = \log_{2} a$ (2) $(2\sqrt{2})^{-\sqrt{3}} = \sqrt{2} - 1$
 $\log_{4} (2)^{2} = 2 - 3 - \log_{2} (2)^{-\sqrt{3}} = 2^{-1}$ (9) $\log_{10} b = 1$
 $\approx \sqrt{2} \log_{2} \sqrt{2} = 2 - 3 - \log_{2} (2)^{-\sqrt{3}} + \log_{2} 2 - \sqrt{3} = -1$ $\log_{5} s/x^{5}$
 $\log_{10} 2^{2} = 2 - 3 - \log_{2} (2)^{-\sqrt{3}} = -1$ $\log_{5} s/x^{5}$
 $\log_{10} 2^{2} = 2 - 3 - \log_{2} (2)^{-\sqrt{3}} = -1$ $\log_{5} s/x^{5}$
 $2 \times x = 2 - 2 - 2\sqrt{3} + \sqrt{3} = -1$ $(7nuc) = \log_{5} s/x^{5}$
 $\log_{10} 0 - 1 = \log_{10} 10^{-1} = -\sqrt{2}$ (1) $\sqrt{3} \log_{2} 9$ (2) $2^{-\log_{2} x}$
 $\log_{10} 0 - 1 = \log_{10} 10^{-1} = -\sqrt{2}$ (1) $\sqrt{3} \log_{2} 9$ (2) $2^{-\log_{2} x}$
 $(1) \sqrt{3} \log_{2} q^{-1/4} = \sqrt{3} \log_{3} \sqrt{19} = \frac{2}{\log_{2} \sqrt{3}} = \sqrt{3} = \sqrt{3}$
 $(2) 2^{-\log_{2} x} = 2^{2} \cdot 2^{-\log_{2} x} = 4 2^{\log_{2} x^{5}} = 4 \sqrt{5} = \frac{1}{3}$
 $(3) \log_{10} w + \log_{10} = wn$
 $(4) 2 \log_{10} 1^{5} = 2^{\log_{2} 2/x^{5}} = 2^{2/2} \log_{2} x^{5} = 2^{\log_{2} 1/3} = (\sqrt{3} + 1)^{2} \log_{10} 1^{5} = 2^{\log_{2} 2/3} = 2^{\log_{2} 1/3} = (\sqrt{3} + 1)^{2} \log_{10} a^{-1} = 2^{\log_{2} 1/3} = 2^{\log$

Trigonometry
Wednesday, May 31, 2023 12:30 PM
Gat
$$z = 1 - \sin^{2} z$$

 $1 + \tan z = \frac{\sin z}{\cos z}$
 $1 + \tan^{2} = \frac{\sin^{2} z}{\cos^{2} z}$
 $1 + \tan^{2} = \frac{\sin^{2} z}{\cos^{2} z}$
 $1 + \tan^{2} = \frac{\sin^{2} z}{\sqrt{1 - \sin^{2} z}}$
 $1 + \sin^{2} z$
 $\tan^{2} z + \frac{\pi^{2}}{21} + \frac{\pi^{2}}{21} - \frac{\pi^{2}}{61} + \frac{\pi^{2}}{\cos^{2} z}$
 $\tan^{2} z + \frac{\pi^{2}}{21} + \frac{\pi^{2}}{21} - \frac{\pi^{2}}{61} + \frac{\pi^{2}}{\cos^{2} z}$
 $\sin^{2} z + \frac{\pi^{2}}{21} + \frac{\pi^{2}}{21} - \frac{\pi^{2}}{61} + \frac{\pi^{2}}{\cos^{2} z}$
 $\sin^{2} z + \frac{\pi^{2}}{21} + \frac{\pi^{2}}{21} - \frac{\pi^{2}}{61} + \frac{\pi^{2}}{\cos^{2} z}$
 $\sin^{2} z + \frac{\pi^{2}}{21} + \frac{\pi^{2}}{21} - \frac{\pi^{2}}{61} + \frac{\pi^{2}}{\cos^{2} z}$
 $\sin^{2} z + \frac{\pi^{2}}{21} + \frac{\pi^{2}}{21} - \frac{\pi^{2}}{61} + \frac{\pi^{2}}{\cos^{2} z}$
 $\sin^{2} z + \frac{\pi^{2}}{21} + \frac{\pi^{2}}{21} - \frac{\pi^{2}}{61} + \frac{\pi^{2}}{\cos^{2} z}$
 $\sin^{2} z + \frac{\pi^{2}}{21} + \frac{\pi^{2}}{21} - \frac{\pi^{2}}{21} + \frac{\pi^{2$

Blank

Tuesday, May 30, 2023 12:00 PM