

- Let λ , μ be distinct eigenvalues of a 2×2 matrix A. Then, which of the following statements must be true?
 - l. A² has distinct eigenvalues
 - $\frac{\lambda^3 \mu^3}{2} A \lambda \mu (\lambda + \mu) I$
 - 3. trace of A^n is $\lambda^n + \mu^n$ for every positive integer n
 - 4. A is not a scalar multiple of identity for any positive integer n

- Let A, B be $n \times n$ real matrices. Which of the following statements is correct?
 - 1. rank(A+B) = rank(A) + rank(B)
- 3. $rank(A+B) = min\{rank(A), rank(B)\}$
- 2. $rank (A+B) \le rank (A) + rank (B)$ 4. $rank (A+B) = max \{rank (A), rank (B)\}$
- **29.** Let ξ be a primitive cube root of unity. Define $A = \begin{bmatrix} \xi^{-1} & 0 \\ 0 & \xi \end{bmatrix}$. For a vector $\mathbf{V} = (v_1, v_2, v_3) \in \mathbb{R}^d$ define

$$|\mathbf{v}|_A = \sqrt{|\mathbf{v}A\mathbf{v}^T|}$$
, where \mathbf{v}^T is transpose of \mathbf{v} . If $\mathbf{w} = (1,1,1)$ then $|\mathbf{w}|_A$ equals 1.0

- The dimension of the vector space of all symmetric matrices $A = (a_{ij})$ of order $n \times n(n \ge 2)$ with real entries, a11=0 and trace zero is
 - 1. $(n^2 + n 4)/2$
- $2.(n^2-n+4)/2$
- 3. $(n^2+n-3)/2$
- 4. $(n^2-n+3)/2$
- 31. Let N be the vector space of all real polynomials of degree at most 3. Define $S: N \to N$ by S(p(x)) = p(x+1), $p \in N$. Then the matrix of S in the basis $\{1, x, x^2, x^3\}$ considered as column vectors is given by:

$$I.\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix} \qquad 2.\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad 3.\begin{bmatrix} 1 & 1 & 2 & 3 \\ 1 & 1 & 2 & 3 \\ 2 & 2 & 2 & 3 \\ 3 & 3 & 3 & 3 \end{bmatrix}$$

$$2. \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3.
$$\begin{bmatrix} 1 & 1 & 2 & 3 \\ 1 & 1 & 2 & 3 \\ 2 & 2 & 2 & 3 \\ 3 & 3 & 3 & 3 \end{bmatrix}$$

$$4. \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Which of the following matrices are positive definite?

$$I.\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$2. \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

4.
$$\begin{bmatrix} 0 & 4 \\ 4 & 0 \end{bmatrix}$$

- 33. Let A be a non-zero linear transformation on a real vector space V of dimension n. Let the subspace $V_0 \subset V$ be the image of V under A. Let $k = \dim V_0 < n$ and suppose that for some $\lambda \in \mathbb{R}$, $A^2 = \lambda A$. Then 1. $\lambda = 1$
 - 2. det $A = |\lambda|^n$
 - 3. λ is the only eigenvalue of A
 - 4. there is a nontrivial subspace $V_1 \subset V$ such that Ax = 0 for all $x \in V_1$

Let C be an $n \times n$ real matrix. Let W be the vector space spanned by $\{1, C, C^2, ..., C^{2n}\}$. The dimension of the vector space W is j. 2n 2. atmost n 3. n^2 4. atmost 2n \mathcal{L} et V_1, V_2 be subspaces of a vector space V. Which of the following is/are necessarily a subspace of V? $\begin{array}{l} 1.\ V_{1} \cap V_{2} \\ 3.\ V_{1} + V_{2} = \left\{ x + \ y : x \in V_{1}, \ y \in V_{2} \right\} \end{array}$ 2. $V_1 \cup V_2$ 4. $V_1/V_2 = \{x \in V_1 \text{ and } x \notin V_2\}$ Let N be a non-zero 3×3 matrix with the property $N^2=O$. Which of the following is/are true? 1. N is not similar to a diagonal matrix.

2. N is similar to a diagonal matrix. 3. N has one non-zero eigenvector. 4. N has three linearly independent eigenvectors.

- 3°. Let n be a positive integer and let $M_*(\mathbb{R})$ denote the space of all n×n real matrices. If $T: M_*(\mathbb{R}) \to M_*(\mathbb{R})$ is a linear transformation such that T(A)=0 whenever $A\in M_{n}(\mathbb{R})$ is symmetric or skew-symmetric, then the rank of T is
 - $\frac{n(n+1)}{n(n+1)}$
- $2. \frac{n(n-1)}{2} \qquad \qquad 3. \ n$
- $3k \quad \text{Let S: } \mathbb{R}' \to \mathbb{R}' \text{ and } T \colon \mathbb{R}' \to \mathbb{R}' \text{ be linear transformations such that } T \circ S \text{ is the identity map of } \mathbb{R}'. \text{ Then } T \circ S \to \mathbb{R}' \text{ and } T : \mathbb{R}' \to \mathbb{R}' \text{ be linear transformations such that } T \circ S \to \mathbb{R}' \text{ is the identity map of } \mathbb{R}'.$ 1. S . T is the identity map of R' 2. S = T is one-one, but not onto.
 - 3. $S \circ T$ is onto, but not one-one.
- 4. S . T is neither one-one nor onto.
- 39. Let V be a 3-dimensional vector space over the field $F_3 = \mathbb{Z}/3\mathbb{Z}$ of 3 elements. The number of distinct 1- dimensional subspaces of V is 3. 9 4. 15
- 40. Let V be the inner product space consisting of linear polynomials, $p\colon [0,1]\to \mathbb{R}$ (i.e., V consists of polynomials p of the form p(x) = ax + b; $a, b \in \mathbb{R}$), with the inner product defined by
 - $\langle p,q\rangle = \int\limits_{-1}^{1} p(x) q(x) dx$ for $p,q \in V$. An orthonormal basis of V is

41. Let
$$f(x)$$
 be the minimal polynomial of the 4×4 matrix $A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$. Then the rank of the 4×4

42. Let a, b, c be positive real numbers such that
$$b^2 + c^2 < a < 1$$
. Consider the 3×3 matrix $A = \begin{bmatrix} 1 & b & c \\ b & a & 0 \\ c & 0 & 1 \end{bmatrix}$

- 1. All the eigenvalues of A are negative real numbers.
- 2. All the eigenvalues of A are positive real numbers.
- 3. A can have a positive as well as a negative eigenvalue.
- 4. Eigenvalues of A can be non-real complex numbers.

43. The system of equations
$$x + y + z = 1$$
, $2x + 3y - z = 5$, $x + 2y - kz = 4$, where $k \in \mathbb{R}$, has an infinite number of solutions for

$$I. \quad k = 0$$

umber of solutions for
$$k = 0$$
 2. $k = 1$ 3.

4.
$$k = 3$$

- Let n be an integer, $n \ge 3$ and let u_p , $u_2,...,u_n$ be n linearly independent elements in a vector space over **R.** Set $u_0 = 0$ and $u_{n+1} = u_i$. Define $v_i = u_i + u_{i+1}$ and $w_i = u_{i+1} + u_i$ for i = 1, 2, ..., n. Then 1. v_p , v_p ,..., v_n are linearly independent, if n = 2010.

 - 2. $v_1, v_2,...,v_n$ are linearly independent, if n = 2011.
 - 3. $w_1, w_2, ..., w_n$ are linearly independent, if n = 2010.
 - 4. $w_1, w_2, ..., w_n$ are linearly independent, if n = 2011.
- **45.** Let V and W be finite-dimensional vector spaces over \mathbb{R} and let $T_1:V\to V$ and $T_2:W\to W$ be linear transformations whose minimal polynomials are given by $f_1(x) = x^3 + x^2 + x + 1$ and $f_2(x) = x^3 - x^2 - 2$. Let $T: V \oplus W \to V \oplus W$ be the linear transformation defined by $T((v, w)) = (T_1(v), T_2(w))$ for $(v, w) \in V \oplus W$ and let f(x) be the minimal polynomial of T. Then
 - $1. \, \deg f(x) = 7$
- $2. \deg f(x) = 5$
- 3. nullity(T) = 1
- 4. nullity(T) = 0
- **46.** Let $a, b, c, d \in \mathbb{R}$ and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$

for
$$\begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$$
. Let $S: \mathbb{C} \to \mathbb{C}$ be the corresponding map defined by $S(x + iy) = (ax + by) + i(cx + by)$

- S is always \mathbb{C} linear, that is $S(z_1 + z_2) = S(z_1) + S(z_2)$ for all $z_1 z_2 \in \mathbb{C}$ and $S(\alpha z) = \alpha S(z)$ for all $\alpha \in \mathbb{C}$ and $z \in \mathbb{C}$. 2. S is \mathbb{C} -linear if b = -c and d = a. 3. S is C – linear only if b = -c and d = a. $\frac{1}{4}$ S is \mathbb{C} – linear if and only if T is the identity transformation. 4. Let $A = [a_{ij}]$ be an $n \times n$ complex matrix and let A' denote the conjugate transpose of A. Which of the If A is invertible, then $tr(A^{\bullet}A) \neq 0$, i.e., the trace of $A^{\bullet}A$ is non zero.
 - following statements are necessarily true?

 - 2. If $tr(A^*A) \neq 0$, then A is invertible.
 - 3. If $|tr(A^*A)| \le n^2$, then $|a_{ij}| \le 1$ for some i.j.
 - 4. If $tr(A^*A) = 0$, then A is the zero matrix.
- 48. Let n be a positive integer and V be an (n + 1)-dimensional vector space over \mathbb{R} . If $\{e_1e_2...,e_{n+1}\}$ is a basis of V and T: $V \rightarrow V$ is the linear transformation satisfying $T(e_i) = e_{i+1}$ for i=1, 2, ..., n and $T(e_{n+1}) = 0$.
 - 1. trace of T is non-zero.
- 2. rank of T is n.
- 3. nullity of T is 1
- 4. $T'' = T \circ T \circ ... \circ T$ (n times) is the zero map.
- 49. Let A and B be $n \times n$ real matrices such that AB = BA = O and A + B is invertible. Which of the following are always true?
 - 1. rank(A) = rank(B)
- 2. rank(A) + rank(B) = n.
- 3. nullity(A) + nullity(B) = n.
- 4. A B is invertible.
- 50. Let n be an integer ≥ 2 and let $M_n(\mathbb{R})$ denote the vector space of $n \times n$ real matrices. Let $B \in M_n(\mathbb{R})$ be an orthogonal matrix and let B' denote the transpose of B. Consider $W_s = \{B' AB : A \in M_s(\mathbb{R})\}$. Which of the following are necessarily true?
 - 1. W_B is the subspace of $M_n(\mathbb{R})$ and dim $W_B \leq rank(B)$.
 - 2. W_B is the subspace of $M_B(\mathbb{R})$ and dim $W_B = rank(B) rank(B')$.
 - 3. $W_B = M_n(\mathbb{R}).$
 - W_B is not a subspace of M_B (ℝ).
- 51. Let A be a 5×5 skew-symmetric matrix with entries in \mathbb{R} and B be the 5×5 symmetric matrix whose (i,j)th entry is the binomial coefficient $i \in J$ for $1 \le i \le j \le 5$. Consider the 10×10 matrix, given in block
 - form by $C = \begin{pmatrix} A & A+B \\ 0 & B \end{pmatrix}$. Then

 1. $\det C = 1$ or -12. $\det C = 0$
- 3. trace of C is 0.
- 4. trace of C is 5

- $\begin{bmatrix} 1 & 3 & 5 & a & 13 \end{bmatrix}$ Let $A = \begin{bmatrix} 0 & 1 & 7 & 9 & b \end{bmatrix}$, where $a, b \in \mathbb{R}$. Choose the correct statement. 0 0 1 11 15
 - 1. There exist values of a and b for which the columns of A are linearly independent.

 - There exist values of a and b for which Ax=0 has x=0 as the only solution.
 For all values of a and b, the rows of A span a 3-dimensional subspace of R⁵.
 - 4. There exist values of a and b for which rank (A)=2.
- Consider \mathbb{R}^3 with the standard inner product. Let W be the subspace of \mathbb{R}^3 spanned by (1.0.-1). Which of the following is a basis for the orthogonal complement of W?
 - 1. {(1,0,1),(0,1,0)}
- 2. {(1,2,1),(0,1,1)}
- 3. {(2,1,2),(4,2,4)}
- 4. {(2,-1,2),(1,3,1),(-1,-1,-1)}
- A linear transformation T rotates each vector in \mathbb{R}^2 clockwise through 90°. The matrix T relative to the standard ordered basis $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is

- $2. \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \qquad 3. \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad 4. \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$
- Let $T: \mathbb{R}^* \to \mathbb{R}^*$ be a linear transformation. Which of the following statements implies that T is bijective?
 - 1. Nullity (T) = n
- 2. Rank(T) = Nullity(T) = n
- 3. Rank(T) + Nullity(T) = n
- 4. Rank(T) Nullity(T) = n

- 57. Let $A \in M_{10}(\mathbb{C})$, the vector space of 10×10 matrices with entries in \mathbb{C} . Let W_A be the subspace of $M_{10}(\mathbb{C})$ spanned by $\{A^n \mid n \geq 0\}$. Choose the correct statements.
 - 1. For any A, $dim(W_A) \le 10$
- 2. For any A, dim $(W_A) < 10$
- 3. For some A, $10 < dim(W_A) < 100$
- 4. For some A, $dim(W_A)=100$

Let A be a complex 3×3 matrix with $A^4 = -1$. Which of the following statements are correct?

- 1. A has three distinct eigenvalues
- 2. A is diagonalizable over C
- 3. A is triangularizable over C
- 4. A is non-singular
- General Consider the quadratic forms q and p given by $q(x, y, z, w) = x^2 + y^2 + z^2 + bw^2$ and $p(x, y, z, w) = x^2 + y^2 + czw$. Which of the following statements are true?
- 1. p and q are equivalent over $\mathbb C$ if b and c are non-zero complex numbers.
 - 2. p and q are equivalent over R if b and c are non-zero real numbers.
 - 3. p and q are equivalent over \mathbb{R} if b and c are non-zero real numbers with b negative.
 - 4. p and q are NOT equivalent over \mathbb{R} if c=0
- A linear operator T on a complex vector space V has characteristic polynomial $x^3(x-5)^2$ and minimal polynomial x (x -5). Choose all correct options.
 - The Jordan form of T is uniquely determined by the given information
 - There are exactly 2 Jordan blocks in the Jordan decomposition of T
 - The operator induced by T on the quotient space V/Ker(T-51) is nilpotent, where I is the identity
 - 4. The operator induced by T on the quotient space V/Ker(T) is a scalar multiple of the identity
- 61. Let S denote the set of all primes p such that the following matrix is invertible when considered as a matrix with entries in $\mathbb{Z}/p\mathbb{Z}$.

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & -1 \\ -2 & 0 & 2 \end{pmatrix}.$$
 Which of the following statements are true?

- 1. S contains all the prime numbers
- S contains all the prime numbers greater than 10
- S contains all the prime numbers other than 2 and 5
 S contains all the odd prime numbers.

62.	For a fixed positive integer $n \ge 3$, let A be the identity matrix and J is the $n \times n$ matrix with a NOT true? 1. $A^k = A$ for every positive integer k . 3. $Rank(A) + Rank(I - A) = n$.	the $n \times n$ matrix defined as $A = I - \frac{1}{n}I$, where I is the all entries equal to I . Which of the following statements is 2. Trace $(A)=n-I$ 4. A is invertible.	

- 63. Let A be a 5×4 matrix with real entries such that $A \underline{x} = \underline{0}$ if and only if $\underline{x} = \underline{0}$, where \underline{x} is a 4×1 v_{ect_0} and 0 is a null vector. Then, the rank of A is 3. 2 2. 5 1.4
- 64. Consider the following row vectors
 - $\alpha_1 = (1,1,0,1,0,0), \ \alpha_2 = (1,1,0,0,1,0)$
 - $\alpha_3 = (1, 1, 0, 0, 0, 1), \ \alpha_4 = (1, 0, 1, 1, 0, 0)$
 - $\alpha_5 = (1,0,1,0,1,0), \quad \alpha_6 = (1,0,1,0,0,1)$

The dimension of the vector space spanned by these row vectors is

- 2. 5

- 4. 3
- 65. Let $A_{n=n} = ((a_{ij})), n \ge 3$, where $a_{ij} = (b_i^2 b_j^2)$, i, j = 1, 2, ..., n for some distinct real numbers $b_1, b_2, ..., b_n$. Then det(A) is

 - 1. $\prod_{i < j} (b_i b_j)$ 2. $\prod_{i < j} (b_i + b_j)$ 3. 0

3 4

- 4. I
- Let A be an $n \times n$ matrix with real entries. Which of the following is correct?
 - 1. If $A^2=0$, then A is diagonalizable over complex numbers.
 - 2. If A²=I, then A is diagonalizable over real numbers
 - 3. If $A^2=A$, then A is diagonalizable only over complex numbers.
 - 4. The only matrix of size n satisfying the characteristic polynomial of A is A.
- 67. Let A be a 4×4 invertible real matrix. Which of the following is NOT necessarily true?
 - 1. The rows of A form a basis of R'.
 - 2. Null space of A contains only the 0 vector.
 - A has 4 distinct eigenvalues.
 - 4. Image of the linear transformation $x \mapsto Ax$ on \mathbb{R}^t is \mathbb{R}^t .

- **68.** Let $\{v_1,...,v_n\}$ be a linearly independent subset of a vector space V, where $n \ge 4$. Set $w_{ij} = v_i v_j$. Let Vbe the span of $\{w_{ii} \mid 1 \le i, j \le n\}$. Then
 - 1. $\{w_{ij} \mid 1 \le i < j \le n\}$ spans W.
 - 2. $\{w_{ij} \mid 1 \le i < j \le n\}$ is a linearly independent subset of W.
 - 3. $\{w_{ij} \mid 1 \le i \le n-1, j=i+1\}$ spans W.
 - 4. $\dim W = n$

gQ.	For any real square matrix M , let $\lambda^*(M)$ is multiplicities. Let A be an $n \times n$ real symmetric 1. Rank $A = Rank Q^T AQ$ 3. $\lambda^*(A) = \lambda^*(Q^T AQ)$	be the number of positive eigenvalues of M counting matrix and Q be an $n \times n$ real invertible matrix. Then 2. Rank $A = Rank Q^{-1}AQ$ 4. $\lambda^*(A) = \lambda^*(Q^{-1}AQ)$
7).	Let T_p , T_z be two linear transformations from that $T_i(x_i) \neq 0$ for every $i=1,2,,n$ and that $x_i \perp is$ is necessarily true? 1. T_j is invertible 3. Both T_pT_z are invertible	\mathbb{R}^n to \mathbb{R}^n . Let $\{x_1, x_2,, x_n\}$ be a basis of \mathbb{R}^n . Suppose Ker T_2 for every $i=1,2,,n$. Which of the following 2. T_2 is invertible 4. Neither T_1 nor T_2 is invertible
71.	such that $B = \{v_1,, v_n\}$ is a set of linearly ind 1. The matrix of T with respect to B is diagon 2. The matrix of $T - S$ with respect to B is diagon 3. The matrix of T with respect to B is not new	nal. agonal.
72.		ero vector $v \in \mathbb{R}^n$, suppose that $(A - \lambda I)^k v = 0$ for some atrix. Then which of the following is/are always true? 2. $(A - \lambda I)^{k-1}v = 0$ 4. λ is an eigenvalue of A
73.	Let y be a non-zero vector in an inner product 1. $\{x \in V \mid < x, y >= 0\}$. 2. $\{x \in V \mid < x, y >= 1\}$. 3. $\{x \in V \mid < x, z >= 0 \text{ for all z such that } < z, y >= 0$. 4. $\{x \in V \mid < x, z >= 1 \text{ for all z such that } < z, y >= 0$.	

74.	Let A be a 5×5 matri sum of all the entries i	$n A^3$ is		the entries in each row o	f A is 1. Then the
75.	1. 3	2. 15	3. 5	4. 125 I and let I denote the id	dentity matrix of
/3.	order 101. Then the d	eterminant of J-I is 2. 1	3. O	4. 100	acting matrix of

- Let $M_{mon}(\mathbb{R})$ be the set of all $m \times n$ matrices with real entries. Which of the following $stale_{men_0}$
 - 1. There exists $A \in M_{\geq \delta}(\mathbb{R})$ such that the dimension of the null space of A is 2.
 - 2. There exists $A \in M_{\geq \delta}(\mathbb{R})$ such that the dimension of the null space of A is 0.
 - 3. There exist $A \in M_{\geq s}(\mathbb{R})$ and $B \in M_{\leq s \geq 2}(\mathbb{R})$ such that AB is the 2×2 identity matrix.
 - 4. There exists $A \in M_{\geq 0}(\mathbb{R})$ whose null space is $\{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_i = x_2, x_3 = x_4 = x_5\}$
- 77. For the matrix A as given below, which of them satisfy $A^6=1$?

For the matrix A as given below, matrix
$$A$$
 as given below, matrix A is given below, matrix A is given below, matrix A is A is

2.
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\frac{\pi}{3} & \sin\frac{\pi}{3} \\ 0 & -\sin\frac{\pi}{3} & \cos\frac{\pi}{3} \end{pmatrix}$$

3.
$$A = \begin{pmatrix} \cos\frac{\pi}{6} & 0 & \sin\frac{\pi}{6} \\ 0 & 1 & 0 \\ -\sin\frac{\pi}{6} & 0 & \cos\frac{\pi}{6} \end{pmatrix}$$

4.
$$A = \begin{bmatrix} \cos\frac{\pi}{2} & \sin\frac{\pi}{2} & 0\\ -\sin\frac{\pi}{2} & \cos\frac{\pi}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

- Let V denote a vector space over a field F and with a basis $B = \{e_1, e_2, ..., e_n\}$. Let $x_1, x_2, ..., x_n \in F$. Let $C = \{x_1e_1, x_1e_1 + x_2e_2, ..., x_1e_1 + x_2e_2 + ... + x_ne_n\}. \ Then$
 - 1. C is linearly independent set implies that $x_i \neq 0$ for every i=1,2,...,n.
 - 2. $x_i \neq 0$ for every i=1,2,...,n implies that C is linearly independent set.
 - 3. The linear span of C is V implies that $x_i \neq 0$ for every i=1,2,...,n.
 - 4. $x_i \neq 0$ for every i=1,2,...,n implies that the linear span of C is V.
- Let V denote the vector space of all polynomials over $\mathbb R$ of degree less than or equal to n. Which of the following defines a norm of V^{α} following defines a norm on V?

$$||p||^2 = |p(1)|^2 + ... + |p(n+1)|^2, p \in V \qquad 2. ||p|| = \sup_{t \in [0,1]} |p(t)|, p \in V$$

2.
$$||p|| = \sup_{t \in [0,1]} |p(t)|, p \in V$$

3.
$$||p|| = \int_0^1 |p(t)| dt, p \in V$$

4.
$$||p|| = \sup_{t \in [0,1]} |p'(t)|, p \in V$$

- Let u,v,w be vectors in an inner- product space V, satisfying ||u|| = ||v|| = ||w|| = 2 and ||u|| = ||v|| = 1. Then which of the following are |u-v| = 2. Let u,v > 1, $\langle v,w \rangle = 1$. Then which of the following are true?
 - $||w^+v^-u|| = 2\sqrt{2} \,.$
 - $\left\{\frac{1}{2}u, \frac{1}{2}v\right\}$ forms an orthonormal basis of a two dimensional subspace of V.
 - w and 4u-w are orthogonal to each other.
 - u,v,w are necessarily linearly independent.
- []. Let A be a 4×4 matrix over \mathbb{C} such that rank(A)=2 and $A^3=A^2\neq 0$. Suppose that A is not diagonalizable. Then
 - One of the Jordan blocks of the Jordan canonical form of A is $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$

 - There exists a vector v such that $Av \neq 0$ but $A^2v = 0$.
 - The characteristic polynomial of A is $x^4 x^3$.
- $\text{12.} \quad \text{Let } \phi \colon \mathbb{R}^2 \to \mathbb{C} \text{ be the map defined by } \phi(x,y) = z, \text{ where } z = x + iy. \text{ Let } f \colon \mathbb{C} \to \mathbb{C} \text{ be the function } f(z) = z^2 + iy.$ and $F = \varphi^{-1} f \varphi$. Which of the following are correct?
 - The linear transformation $T(x, y) = 2 \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$ represents the derivative of F at (x,y).
 - The linear transformation $T(x, y) = 2 \begin{pmatrix} x & y \\ y & x \end{pmatrix}$ represents the derivative of F at (x,y).
 - The linear transformation T(z)=2z represents the derivative of f at $z \in \mathbb{C}$.
 - The linear transformation T(z)=2z represents the derivative of f only at 0.
- 8. Let V be the vector space of polynomials over R of degree less than or equal to n. For $p(x) = a_0 + a_1x + ... + a_nx^n$ in V, define a linear transformation $T: V \to V$ by $(Tp)(x) = a_0 - a_1 x + a_2 x^2 - \dots + (-1)^n a_n x^n$. Then which of the following are correct? 1. T is one-to-one 4. det T=0 3. T is invertible 2. T is onto
- Consider a homogeneous system of linear equations Ax=0, where A is an $m \times n$ real matrix and n > m. Then which of the following statements are always true?
 - l. Ax=0 has a solution.
 - 2. Ax=0 has no non-zero solution.
 - 3. Ax=0 has a non-zero solution.
 - 4. Dimension of the space of all solutions is at least n-m.

- 85. Let A, B be $n \times n$ matrices such that $BA + B^2 = I BA^2$, where I is the $n \times n$ identity matrix, $y_{h_{i(k_n)}}$ the following is always true?

 - 1. A is nonsingular 2. B is nonsingular 3. A+B is nonsingular 4. AB is nonsingular
- 86. Which of the following matrices has the same row space as the matrix $\begin{pmatrix} 4 & 8 & 4 \\ 3 & 6 & 1 \end{pmatrix}$?

- The determinant of the n×n permutation matrix

 ...
 1
 - 1. (-1)"
- $2. \ (-1)^{\left[\frac{n}{2}\right]}$
- 3. -1
- 4. 1

Here, [x] denotes the greatest integer not exceeding x.

- $1 + x + x + x^2$ The determinant $\begin{vmatrix} 1 & 1+y & 1+y+y^2 \\ 1 & 1+z & 1+z+z^2 \end{vmatrix}$ is equal to 88.
 - 1. (z-y)(z-x)(y-x)
- 3. $(x-y)^2(y-z)^2(z-x)^2$
- 2. (x-y)(x-z)(y-z)4. (x^2-x^2) 4. $(x^2-y^2)(y^2-z^2)(z^2-x^2)$
- Which of the following matrices is not diagonalizable over \mathbb{R} ? 89.
- $I. \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \qquad 2. \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix} \qquad \qquad 3. \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad \qquad 4. \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

Let P be a 2×2 complex matrix such that P*P is the identity matrix, where P* is the conjugate of P. Then the eigenvalues of P are Let P be of P. Then the eigenvalues of P are

1. real 3. reciprocals of each other

2. complex conjugates of each other

4. of modulus 1

PART - C

Let A be a real $n \times n$ orthogonal matrix, that is, $A^tA = AA^t = I_n$, the $n \times n$ identity matrix. Which of the following statements are necessarily true?

 $\int_{1}^{1} \langle Ax, Ay \rangle = \langle x, y \rangle \ \forall x, y \in \mathbb{R}^{n}$

2. All eigenvalues of A are either +1 or -1.

3. The rows of A form an orthonormal basis of \mathbb{R}^n .

4. A is diagonalizable over R.

g. Which of the following matrices have Jordan canonical form equal to 0 0 0 ?

 $(0 \ 0 \ 1)$ 1. 0 0 0

%. Let A be a 3×4 and b be a 3×1 matrix with integer entries. Suppose that the system Ax=b has a complex solution. Then

1. Ax=b has an integer solution

2. Ax=b has a rational solution

3. The set of real solutions to Ax=0 has a basis consisting of rational solutions.

4. If b≠0, then A has positive rank.

 $^{rak{M}}$ Let f be a non-zero symmetric bilinear form on \mathbb{R}^3 . Suppose that there exist linear transformations $T_i: \mathbb{R}^3 \to \mathbb{R}, i = 1, 2 \text{ such that for all } \alpha, \beta \in \mathbb{R}^4, f(\alpha, \beta) = T_i(\alpha) T_i(\beta). Then$

2. $dim \{\beta \in \mathbb{R}^3 : f(\alpha, \beta) = 0 \text{ for all } \alpha \in \mathbb{R}^3\} = 2$

3. fis positive semi-definite or negative semi-definite.

4. $\{\alpha: f(\alpha, \alpha) = 0\}$ is a linear subspace of dimension 2

The matrix $A = \begin{bmatrix} 1 & 8 & 2 \end{bmatrix}$ satisfies

A is invertible and the inverse has all integer entries.

2. det(A) is odd.

- 3. det(A) is divisible by 13.
- 4. det(A) has at least two prime divisors.

Let A be 5×5 matrix and let B be obtained by changing one element of A. Let r and s be the ranks of A. Let r and s be the ranks is/are correct? and B respectively. Which of the following statements is/are correct?

1. $s \le r+1$

- 2. $r-1 \leq s$
- 3. s = r 1

97. Let $M_n(K)$ denote the space of all $n \times n$ matrices with entries in a field K. Fix a non-singular matrices $M_n(K)$ given by $T(X) = AX \cdot T$ $A = (A_{ij}) \in M_n(K)$, and consider the linear map $T : M_n(K) \to M_n(K)$ given by T(X) = AX. Then

1. trace (T)= $n\sum_{i=1}^{n} A_{ii}$ 3. rank of T is n^2

2. $trace(T) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}$

4. T is non-singular

98. For arbitrary subspaces U,V and W of a finite dimensional vector space, which of the following hold:

 $I. \ \ U \cap (V+W) \subset U \cap V + U \cap W$

2. $U \cap (V+W) \supset U \cap V + U \cap W$

3. $(U \cap V) + W \subset (U+W) \cap (V+W)$

4. $(U \cap V) + W \supset (U + W) \cap (V + W)$

Let A be a 4×7 real matrix and B be a 7×4 real matrix such that $AB = I_4$, where I_4 is the 4x1identity matrix. Which of the following is/are always true?

1. rank (A)=4

- 2. rank(B) = 7
- 3. nullity(B)=0
- 4. $BA = I_7$, where I_7 is the 7×7 identity matrix

100. Let $\mathbb{R}[x]$ denote the vector space of all real polynomials. Let $D: \mathbb{R}[x] \to \mathbb{R}[x]$ denote the m_i

- $Df = \frac{df}{dx}, \forall f$. Then, 1. D is one-one
- 2. D is onto
- 3. There exists $E: \mathbb{R}[x] \to \mathbb{R}[x]$ so that $D(E(f)) = f, \forall f$.
- 4. There exists $E: \mathbb{R}[x] \to \mathbb{R}[x]$ so that $E(D(f)) = f, \forall f$.

Which of the following are eigenvalues of the matrix $\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \end{bmatrix}$?

(0 0 0 1 0 0) 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 001000

1. +1

2. -1

163. Let V be the space of twice differentiable functions on \mathbb{R} satisfying f''-2f'+f=0.

Define T: $V \to \mathbb{R}^2$ by T(f) = (f'(0), f(0)). Then T is

1. one -to-one and onto

2. one-to-one but not onto

3. onto but not one-to-one

4. neither one-to-one nor onto

164. The row space of a 20×50 matrix A has dimension 13. What is the dimension of the space of solutions of Ax = 0?

1. 7

2. 13

3. 33

- 4. 37
- 105. Let A, B be $n \times n$ matrices. Which of the following equals $trace(A^2B^2)$?

1. $(trace(AB))^2$ 2. $trace(AB^2A)$

3. trace((AB)²)

- 4. trace(BABA)
- 106. Given a 4×4 real matrix A, let $T:\mathbb{R}^4\to\mathbb{R}^4$ be the linear transformation defined by Tv=Av, where we think of \mathbb{R}^4 as the set of real 4×1 matrices. For which choices of A given below, do Image(T) and $Image(T^2)$ have respective dimensions 2 and 1?

(* denotes a non-zero entry)

[* * O O] $I. \ A = \begin{vmatrix} 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$ 0 0 0 0 [0 0 0 0] 3. $A = \begin{vmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & * \end{vmatrix}$ 0 0 * 0

 $[0 \ 0 \ * \ 0]$ $2. \ A = \begin{vmatrix} 0 & 0 & * & 0 \\ 0 & 0 & 0 & * \end{vmatrix}$ 0 0 0 *

[0 0 0 0] $4. \ A = \begin{vmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & * & * \end{vmatrix}$ 0 0 * *

- 10°. Let T be a 4×4 real matrix such that $T^4 = 0$. Let $k_i = \dim KerT^i$ for $1 \le i \le 4$. Which of the following is NOT a possibility for the sequence $k_1 \le k_2 \le k_4 \le k_4$?

2. 1 ≤ 3 ≤ 4 ≤ 4.

3 3545454

- $4.2 \le 3 \le 4 \le 4.$
- Which of the following is a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 ?

 - (a) $f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ x+y \end{pmatrix}$ (b) $g \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} xy \\ x+y \end{pmatrix}$

- 1. Only f.
- 3. Only h

- 4. all the transformations f, g and h.
- 109, Let A be an $m \times n$ matrix of rank n with real entries. Choose the correct statement.
 - 1. Ax b has a solution for any b.
 - 2. As = 0 does not have a solution.
 - 3. If Ax = b has a solution, then it is unique.
 - 4. y'A = 0 for some nonzero y, where y' denotes the transpose of the vector y.

- 110. Let $F: \mathbb{R}^* \times \mathbb{R}^* \to \mathbb{R}$ be the function $F(x,y) = \langle Ax, y \rangle$, where \langle , \rangle is the standard inner product of \mathbb{R}^* and Ais a n×n real matrix. Here D denotes the total derivative. Which of the following statements are
 - $I. \quad (DF(x,y))(u,v) = \langle Au, y \rangle + \langle Ax, v \rangle$
 - 2. $(DF(x,y))(\theta,\theta) = \theta$.
 - 3. DF(x,y) may not exist for some $(x,y) \in \mathbb{R}^n \times \mathbb{R}^n$
 - 4. DF(x,y) does not exist at (x,y) = (0,0).
- 111. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a continuous function such that $\int_{\mathbb{R}^n} |f(x)| dx < \infty$. Let A be a real $n \times n$ invertible matrix and for $x,y \in \mathbb{R}^n$, let $\langle x,y \rangle$ denote the standard inner product in \mathbb{R}^n . Then $\int_{\mathbb{R}^n} f(Ax)e^{i\langle y,x \rangle} dx =$
 - $1. \int_{R^*} f(x) e^{i\left\langle (A^{-1})^t y, x \right\rangle} \frac{dx}{\left| \det A \right|}$
- $2. \int_{\mathbb{R}^*} f(x) e^{i\langle A^T y, x \rangle} \frac{dx}{\left| \det A \right|}$
- $3. \int_{\mathbb{R}^n} f(x) e^{i\left\langle (A^T)^{-1}y,x\right\rangle} dx$
- $4. \int_{\mathbb{R}^n} f(x)e^{i\langle A^{-1}y, x \rangle} \frac{dx}{|\det A|}$

- [1 0 0] 112 Let S \approx the set of 3×3 real matrices A with $A^TA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Then the set S contains 0 0 0
 - : a nilvotent matrix.
- 2. a matrix of rank one.
- 3. a matrix of rank two.
- 4. a non-zero skew-symmetric matrix.
- 113. An $n \times n$ complex matrix A satisfies $A^k = I_n$, the $n \times n$ identity matrix, where k is a positive integer > 1. Suppose 1 is not an eigenvalue of A. Then which of the following statements are necessarily true?

 1. A is diagonalizable.

 2. $A+A^2+...+A^{k-l}=O$, the $n\times n$ zero matrix

 3. $T(A)-tr(A^2)+...+tr(A^{k-l})=-n$ 4. $A^{-l}+A^{-2}+...+A^{-(k-l)}=-l_n$
 - 3. $tr(A) tr(A^2) + ... + tr(A^{k-l}) = -n$
- 114. Let S: $\mathbb{R}^* \to \mathbb{R}^*$ be given by S(v) = av for a fixed $a \in \mathbb{R}$, $a \neq 0$. Let $T: \mathbb{R}^* \to \mathbb{R}^*$ be a linear transformation such that $B = \{v_1, ..., v_n\}$ is a set of linearly independent eigenvectors of T. Then
 - The matrix of T with respect to B is diagonal.
 - The matrix of (T S) with respect to B is diagonal.
 - The matrix of T with respect to B is not necessarily diagonal, but is upper triangular.
 - 4. The matrix of T with respect to B is diagonal but the matrix of (T S) with respect to B is not diagonal.
- 115. Let $p_x(x) = x^x$ for $x \in \mathbb{R}$ and let $\mathcal{O} = span \{p_0, p_1, p_2, ...\}$. Then
 - \wp is the vector space of all real valued continuous functions on \mathbb{R} .
 - \wp is a subspace of all real valued continuous functions on \mathbb{R} .
 - $\{p_{\sigma}|p_{\sigma}|p_{\sigma},p_{\sigma}...\}$ is a linearly independent set in the vector space of all continuous functions on \mathbb{R} .
 - Trigonometric functions belong to Q
- 116. Let $A = \begin{bmatrix} a & b & c \\ 0 & a & d \end{bmatrix}$ be a 3×3 matrix, where a,b,c,d are integers. Then, we must have: 0 0 a
 - 1. If $a \neq 0$, there is a polynomial $p \in \mathbb{Q}[x]$ such that p(A) is the inverse of A.
 - $\begin{bmatrix} q(a) & q(b) & q(c) \end{bmatrix}$ For each polynomial $q \in \mathbb{Z}[x]$, the matrix $q(A) = \begin{bmatrix} 1 & q(A) \\ 0 & q(A) \end{bmatrix}$ 0 q(a)
 - 3. If $A^a = O$ for some positive integer n, then $A^J = O$.
 - 4. A commutes with every matrix of the form $\begin{bmatrix} a' & 0 & c' \\ 0 & a' & 0 \end{bmatrix}$

- 117. Which of the following are subspaces of the vector space \mathbb{R}^3 ?
 - 1. $\{(x, y, z): x + y = 0\}$ 2. $\{(x, y, z): x y = 0\}$
 - 3. $\{(x, y, z): x + y = 1\}$
- 4. $\{(x, y, z): x y = 1\}$
- 118. Consider non-zero vector spaces V_1, V_2, V_3, V_4 and linear transformations $\phi_i: V_i \rightarrow V_S$ $\phi_i: V_i \rightarrow V_S$ $\phi_3: V_3 \rightarrow V_4$ such that $Ker(\phi_i) = \{0\}$, $Range(\phi_i) = Ker(\phi_i)$, $Range(\phi_i) = Ker(\phi_i)$, $Range(\phi_i) = V_4$. Then
 - $I. \sum_{i=1}^{4} (-1)^{i} \dim V_{i} = 0$
- 2. $\sum_{i=1}^{4} (-1)^{i} \dim V_{i} > 0$
- 3. $\sum_{i=1}^{4} (-1)^i \dim V_i < 0$
- 4. $\sum_{i=1}^{4} (-1)^i \dim V_i \neq 0$
- 119. Let A be an invertible 4×4 real matrix. Which of the following are NOT true?
 - 1. Rank A = 4.
 - 2. For every vector $b \in \mathbb{R}^4$, Ax = b has exactly one solution.
 - 3. $dim (null space A) \ge 1$.
 - 4. 0 is an eigenvalue of A.
- 120. Let \underline{u} be a real $n \times 1$ vector satisfying $\underline{u}'\underline{u} = 1$, where \underline{u}' is the transpose of \underline{u} . Define $A = I 2\underline{u} \ \underline{u}'$ where I is the n^{th} order identity matrix. Which of the following statements are true?

 1. A is singular

 2. $A^2 = A$ 3. Trace(A) = n 24. $A^2 = I$

121.	Let S denote the set	Let S denote the set of all the prime numbers p with the property that the mat						
	inverse in the field \mathbb{Z} ! 1. $S = \{31\}$	$p\mathbb{Z}$. Then 2. $S = \{31, 59\}$	3. S = {7, 13, 59}	4. S is infin	iite			

- 122. For a positive integer n, let P_n denote the vector space of polynomials in one variable x with red coefficients and with degree $\leq n$. Consider the map $T: P_2 \to P_4$ defined by $T(p(x)) = p(x^2)$. Then
 - 1. T is a linear transformation and dim range (T) = 5.
 - 2. T is a linear transformation and dim range (T) = 3.
 - 3. T is a linear transformation and dim range (T) = 2.
 - 4. T is not a linear transformation.

- Let A be a real 3 × 4 matrix of rank 2. Then the rank of A'A, where A' denotes the transpose of A, is 1. exactly 2 2. exactly 3

 - 3. exactly 4 4. at most 2 but not necessarily 2
- [1 0 0 0] 0 1 0 0 124. Consider the quadratic form $Q(v) = v^t A v$, where A = $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, v = (x, y, z, w)$. Then 0 0 1 0
 - 1. Q has rank 3.
 - 2. $xy + z^2 = Q(Pv)$ for some invertible 4×4 real matrix P
 - 3. $xy + y^2 + z^2 = Q(Pv)$ for some invertible 4×4 real matrix P
 - 4. $x^2 + y^2 zw = Q(Pv)$ for some invertible 4×4 real matrix P.
- 125. If A is a 5 \times 5 real matrix with trace 15 and if 2 and 3 are eigenvalues of A, each with algebraic multiplicity 2, then the determinant of A is equal to
- 2. 24
- 3. 120
- 4. 180
- 126. Let $A \neq I_n$ be an $n \times n$ matrix such that $A^2 = A$, where I_n is the identity matrix of order n. Which of the following statements is false?
 - 1. $(I_n A)^2 = I_n A$.
- 2. Trace(A) = Rank(A).
- 3. $Rank(A) + Rank(I_n A) = n$.
- 4. The eigenvalues of A are each equal to 1.

- 127. Let A and B be $n \times n$ matrices over \mathbb{C} . Then,
 - 1. AB and BA always have the same set of eigenvalues.
 - 2. If AB and BA have the same set of eigenvalues then AB = BA.
 - 3. If A exists then AB and BA are similar.
 - 4. The rank of AB is always the same as the rank of BA.
- 128. Let A be an $m \times n$ real matrix and $b \in \mathbb{R}^m$ with $b \neq 0$.
 - 1. The set of all real solutions of Ax = b is a vector space.
 - 1. If u and v are two solutions of Ax = b, then $\lambda u + (1 \lambda)v$ is also a solution of Ax = b, for any $\lambda \in \mathbb{R}$.
 - 2. If u and v are solutions u and v of Ax = b, the linear combination $\lambda u + (1 \lambda) v$ is also a solution of Ax = b. Ax = b only when $0 \le \lambda \le l$.
 - Ax = b only when Ax = b has at most one solution. 4. If rank of A is n, then Ax = b has at most one solution.

- 129. Let A be an $n \times n$ matrix over \mathbb{C} such that every nonzero vector of \mathbb{C}^n is an eigenvector of A. T_{hen}
 - 1. All eigenvalues of A are equal.
 - 2. All eigenvalues of A are distinct.
 - 3. $A = \lambda I$ for some $\lambda \in \mathbb{C}$, where I is the $n \times n$ identity matrix.
 - A = λ I for some λ∈ C, where I is the h in the hard the minimal polynomial respectively, b_b
 If χ₄ and m₄ denote the characteristic polynomial and the minimal polynomial respectively, b_b $\chi_A = m_A$
- Consider the matrices $A = \begin{bmatrix} 2 & 2 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. Then
 - 1. A and B are similar over the field of rational numbers \mathbb{Q} .
 - 2. A is diagonalizable over the field of rational numbers \mathbb{Q} .
 - 3. B is the Jordan canonical form of A.
 - 4. The minimal polynomial and the characteristic polynomial of A are the same
- 131. Let V be a finite dimensional vector space over \mathbb{R} . Let $T:V\to V$ be a linear transformation such that rank (T^2) = rank (T). Then, 1. Kernel (T^2) = Kernel (T).
- 2. Range $(T^2) = Range(T)$.
- 3. Kernel (T) \cap Range (T) = {0}.
- 4. Kernel $(T^2) \cap Range(T^2) = \{0\}.$
- 132. Let V be the vector space of polynomials over \mathbb{R} of degree less than or equal to n. For $p(x) = a_0 + a_1 x + ... + a_n x^n$ in V, define a linear transformation
 - $T: V \rightarrow V$ by $(Tp)(x) = a_n + a_{n-1}x + ... + a_0x^n$. Then
 - 1. T is one to one. 2. T is onto.
- 3. T is invertible.
- 4. $\det T = \pm 1$.

133. Given a $n \times n$ matrix B define e^B by $e^B = \sum_{j=0}^m \frac{B^j}{j!}$. Let p be the characteristic polynomial of B. Then the matrix $e^{p(B)}$ is 1. I_{poin} 2. 0_{poin} 3. eI_{poin} 4. πI_{poin}

134. Let A be a $n \times m$ matrix and b be a $n \times 1$ vector (with real entries). Suppose the equation Ax = b. $x \in R^m$ admits a unique solution. Then we can conclude that 1. $m \ge n$ 2. $n \ge m$ 3. n = m 4. n > m

- Let V be the vector space of all real polynomials of degree ≤ 10 . Let T(p(x)) = p'(x) for $p \in V$ be a forcer transformation from V to V. Consider the basis $\{1, x, x^2, ..., x^{10}\}$ of V. Let A be the Let V be the vector P(x) = P(x) for $p \in V$ be a linear transformation from V to V. Consider the basis $\{1, x, x^2, ..., x^{10}\}$ of V. Let A be the matrix of T with respect to this basis. Then 2. det A=0
 - 1. Trace A=1 3. there is no $m \in \mathbb{N}$ such that $A^m = 0$
- 4. A has a non zero eigenvalue
- Let $x = (x_1, x_2, x_3)$, $y = (y_1, y_2, y_3) \in \mathbb{R}^3$ be linearly independent. Let $\delta_1 = x_2y_3 y_2x_3$, $\delta_3 = x_1 y_3 - y_1 x_3$, $\delta_3 = x_1 y_2 - y_1 x_2$. If V is the span of x, y, then
 - $\int_{0}^{\infty} V = \{(u, v, w) : \delta_{1}u \delta_{2}v + \delta_{3}w = 0\}$
 - 2. $V = \{(u, v, w) : -\delta_1 u + \delta_2 v + \delta_3 w = 0\}$
 - $\{V = \{(u, v, w) : \delta_1 u + \delta_2 v \delta_3 w = 0\}$
- 4. $V = \{(u, v, w) : \delta_1 u + \delta_2 v + \delta_3 w = 0\}$
- 137. Let A be a $n \times n$ real symmetric non-singular matrix. Suppose there exists $x \in \mathbb{R}^n$ such that x' A x < 0. Then we can conclude that
 - 1. det (A)<0

- 2. B = -A is positive definite
- 3. $\exists y \in \mathbb{R}^n$; $y^* A^{-1} y < 0$
- $4. \forall y \in \mathbb{R}^n: y'A^{-1}y < 0$
- 138. Let $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Let $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(v, w) = w^T A v$.

Pick the correct statement from below

- There exists an eigenvector v of A such that Av is perpendicular to v
- The set $\{v \in \mathbb{R}^2 \mid f(v, v) = 0\}$ is a nonzero subspace of \mathbb{R}^2
- If $v, w \in \mathbb{R}^{3}$ are non-zero vectors such that f(v, v) = 0 = f(w, w), then v is a scalar multiple of 3.
- For every $v \in \mathbb{R}^2$, there exists a non zero $w \in \mathbb{R}^2$ such that f(v, w) = 0.

- 139. Let V be the vector space of all complex polynomials p with deg $p \le n$. Let T: $V \to V$ be the map (Tp) $(x) = p'(1), x \in \mathbb{C}$. Which of the following are correct?
 - 1. $\dim Ker T = n$.
- 2.dim range T = 1. 3. dim Ker T = 1.
- 4. dim range T = n+1.
- 140. Let A be an $n \times n$ real matrix. Pick the correct answer(s) from the following
 - 1. A has at least one real eigenvalue.
 - 2. For all nonzero vectors $v, w \in \mathbb{R}^n$, $(Aw)^T (Av) \ge 0$.
 - 3. Every eigenvalue of A^TA is a non negative real number.
 - 4. $1 + A^T A$ is invertible.
- Let T be a $n \times n$ matrix with the property T'' = 0. Which of the following is/are true?
 - 2. T has one eigenvalue of multiplicity n 1. T has n distinct eigenvalues
 - 3. 0 is an eigenvalue of T.
- 4. T is similar to a diagonal matrix.

- 142. Let $V = \{f: [0,1] \to \mathbb{R} \mid f \text{ is a polynomial of degree less than or equal to } n\}$. Let $f_j(x) = x^j$ for $0 \le j \le n$ and let A be the $(n+1) \times (n+1)$ matrix given by $a_{ij} = \int_0^1 f_i(x) f_j(x) dx$. Then which of the following is/are true?
 - 1. dim V = n.
 - 2. dim V > n.
 - 3. A is nonnegative definite, i.e., for all $v \in \mathbb{R}^n$, $\langle Av, v \rangle \ge 0$.
 - 4. $\det A > 0$.
- 143. Consider the real vector space V of polynomials of degree less than or equal to d. For $p \in V$ define $||p||_k = \max\{|p(0)|, |p'^{(i)}(0)|, ..., |p'^{(i)}(0)|\}, \text{ where } p'^{(i)}(0) \text{ is the } i^{th} \text{ derivative of } p \text{ evaluated at } 0. \text{ Then } ||p||_k = \max\{|p(0)|, |p'^{(i)}(0)|, ..., |p'^{(i)}(0)|\}, \text{ where } p'^{(i)}(0) \text{ is the } i^{th} \text{ derivative of } p \text{ evaluated at } 0. \text{ Then } ||p||_k = \max\{|p(0)|, |p'^{(i)}(0)|, ..., |p'^{(i)}(0)|\}, \text{ where } p'^{(i)}(0) \text{ is the } i^{th} \text{ derivative of } p \text{ evaluated at } 0. \text{ Then } ||p||_k = \max\{|p(0)|, |p'^{(i)}(0)|, ..., |p'^{(i)}(0)|\}, \text{ where } p'^{(i)}(0) \text{ is the } i^{th} \text{ derivative of } p \text{ evaluated } a \text{ otherwise} \}$ defines a norm on V if and only if
 - $1. k \ge d 1$
- 2. k < d
- 3. $k \ge d$
- 4. k < d 1
- 144. Let A, B be $n \times n$ real matrices such that det A > 0 and det B < 0. For $0 \le t \le 1$, consider C(t) = t A + (1-t)B. Then
 - 1. C(t) is invertible for each $t \in [0,1]$.
- There is a t₀ ∈ (0,1) such that C(t₀) is not invertible.
- 3. C(t) is not invertible for each $t \in [0,1]$. 4. C(t) is invertible for only finitely many $t \in [0,1]$.
- 145. Let $\{a_1,...,a_n\}$ and $\{b_1,...,b_n\}$ be two bases of \mathbb{R}^n . Let P be $n \times n$ matrix with real entries such that $Pa_i=b_i$; i=1,2,...,n. Suppose that every eigenvalue of P is either -1 or 1. Let Q=I+2P. Then which of the following statements are true?
 - 1. $\{a_i + 2b_i \mid i=1,2,...,n\}$ is also a basis of V. 2. Q is invertible.
 - 3. Every eigenvalue of Q is either 3 or -1.
- 4. $\det Q > 0$ if $\det P > 0$.
- 146. Let A be an $n \times n$ matrix with real entries. Define $\langle x, y \rangle_A = \langle Ax, Ay \rangle, x, y \in \mathbb{R}^n$. Then $\langle x, y \rangle_A$ defines an inner-product if and only if
 - 1. $ker A = \{0\}$.

- 2. rank A = n.
- 3. All eigenvalues of A are positive.
- 4. All eigenvalues of A are non-negative.
- 147. Suppose $\{v_1, ..., v_n\}$ are unit vectors in \mathbb{R}^n such that $||v||^2 = \sum_{i=1}^n \left|\langle v_i, v_i \rangle\right|^2, \forall v \in \mathbb{R}^n$

Then decide the correct statements in the following

- I. $v_1, ..., v_n$ are mutually orthogonal.
- {v₁,..., v_n} is a basis for ℝⁿ.
- 3. $v_1, ..., v_n$ are not mutually orthogonal.
- 4. At most n-1 of the elements in the set $\{v_1, ..., v_n\}$ can be orthogonal.

$$\int_{1}^{1} \int_{0}^{1} \int_{$$

- 1. positive definite.
- 3. negative definite.
- 2. non-negative definite but not positive definite.
- 4. neither negative definite nor positive definite.
- 149. Which of the following subsets of R4 is a basis of R4?
 - $B_1 = \{(1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1)\}, B_2 = \{(1,0,0,0), (1,2,0,0), (1,2,3,0), (1,2,3,4)\}$
 - $B_{s} = \{(1,2,0,0), (0,0,1,1), (2,1,0,0), (-5,5,0,0)\}$
 - 1. B, and B, but not B;
- 2. B_1 , B_2 and B_3
- 3. B_1 and B_3 but not B_2
- 4. Only B,

150. Let
$$D_1 = \det \begin{pmatrix} a & b & c \\ x & y & z \\ p & q & r \end{pmatrix}$$
 and $D_2 = \det \begin{pmatrix} -x & a & -p \\ y & -b & q \\ z & -c & r \end{pmatrix}$. Then
$$1. D_1 = D_2 \qquad 2. D_1 = 2D_2 \qquad 3. D_1 = -D_2 \qquad 4. 2D_1 = D_2$$

- 151. Consider the matrix $A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$, where $\theta = \frac{2\pi}{31}$. Then A^{2015} equals
 - 3. $\begin{pmatrix} \cos 13\theta & \sin 13\theta \\ -\sin 13\theta & \cos 13\theta \end{pmatrix}$

- Let J denote the matrix of order $n \times n$ with all entries 1 and let B be a $(3n) \times (3n)$ matrix given by
 - $B = \begin{bmatrix} 0 & J & 0 \end{bmatrix}$. Then the rank of B is (J 0 0)

- 4. 3
- Which of the following sets of functions from ℝ to ℝ is a vector space over ℝ?
 - $S_1 = \{ f \mid \lim_{x \to 1} f(x) = 0 \}$
 - $S_2 = \left\{ g \middle| \lim_{x \to \infty} g(x) = 1 \right\}$

$$S_3 = \left\{ h \middle| \lim_{\lambda \to 3} h(x) exists \right\}$$

1. Only S,

2. Only S,

3. S, and S, but not S,

4. All the three are vector spaces

154. Let A be an $n \times m$ matrix with each entry equal to +1, -1 or 0 such that every column has exactly n_{th} +1 and exactly one -1. We can conclude that

1. Rank $A \le n-1$ 2. Rank A = m

4. $n-1 \le m$

155. What is the number of non-singular 3×3 matrices over F_2 , the finite field with two elements? 2. 384

PART - C

- 156. Let $A = [a_{ij}]$ be an $n \times n$ matrix such that a_{ij} is an integer for all i, j. Let AB = I with $B = [b_{ij}]$ (where I) is the identity matrix). For a square matrix C, det C denotes its determinant. Which of the following statements is true?
 - 1. If $\det A = 1$ then $\det B = 1$.
 - 2. A sufficient condition for each b_{ij} to be an integer is that det A is an integer.
 - 3. B is always an integer matrix.
 - 4. A necessary condition for each b_{ii} to be an integer is det $A \in \{-1, +1\}$.
- **157.** Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ and let α_n and β_n denote the two eigenvalues of A^n such that $|\alpha_n| \ge |\beta_n|$. Then

1. $\alpha_n \to \infty$ as $n \to \infty$

2. $\beta_n \rightarrow 0$ as $n \rightarrow \infty$

3. β_n is positive if n is even.

β_n is negative if n is odd.

158. Let M_n denote the vector space of all $n \times n$ real matrices. Among the following subsets of M_n , decide which are linear subspaces.

1. $V_1 = \{A \in M_n : A \text{ is nonsingular}\}$

2. $V_2 = \{A \in M_n : det(A) = 0\}$

3. $V_3 = \{A \in M_n : trace(A) = 0\}$

4. $V_4 = \{BA: A \in M_n\}$, where B is some fixed matrix in M_n

If P and Q are invertible matrices such that PQ = -QP, then we can conclude that 1. Tr(P) = Tr(Q) = 0 2. Tr(P) = Tr(Q) = 1 3. Tr(P) = -Tr(Q) 4. $Tr(P) \neq Tr(Q)$

```
Let n be an oal number < 1. Let A = [a_n] be an n \times n matrix with \det a_n = 0 for all the other pairs (i,j). Then we can conclude that [i,j] has l as an eigenvalue.
      2. A has -1 as an eigenvalue.

    A has at least one eigenvalue with multiplicity ≥ 2.

    A has no real eigenvalues.

4. A has no real eigenvalues.

18. Let W_p, W_2, W_3 be three distinct subspaces of \mathbb{R}^{10} such that each W_i has dimension 9. Let W = W_i \cap W_2 \cap W_3. Then we can conclude that
      1. W may not be a subspace of R10
                                                                 2. dim W \le 8
                                                                 4. dim W \le 3
      3. dim W \ge 7
162. Let A be a real symmetric matrix. Then we can conclude that
      Let A be a real g. A does not have 0 as an eigenvalue 2. All eigenvalues of A are real 3. If A^T exists, then A^T is real and symmetric 4. A has at least one positive eigenvalue
```

```
163. Let A be a 4 × 4 matrix. Suppose that the null space N(A) of A is
```

 $\{(x,y,z,w)\in\mathbb{R}^d: x+y+z=0, x+y+w=0\}$. Then

1. dim (column space (A)) = 1

2. dim (column space (A)) = 2

3. rank(A) = 1

4. $S = \{(1, 1, 1, 0), (1, 1, 0, 1)\}$ is a basis of N(A).

164. Let A and B be real invertible matrices such that
$$AB = -BA$$
. Then

1. Trace (A) = Trace (B) = 0

2. Trace(A) = Trace(B) = 1

3. Trace (A) = 0, Trace (B) = 1

4. Trace(A) = 1, Trace(B) = 0

165. Let A be an
$$n \times n$$
 self-adjoint matrix with eigenvalues $\lambda_n, ..., \lambda_n$

Let
$$\|X\|_2 = \sqrt{|x_1|^2 + ... + |x_n|^2}$$
 for $X = (x_1, ..., x_n) \in \mathbb{C}^n$. If $p(A) = a_0 I + a_1 A + ... + a_n A^n$ then $\sup_{\|X\|_2 = 1} \|p(A)X\|_2$ is equal to

1. $\max\{a_0 + a_1\lambda_j + ... + a_n\lambda_j^n : 1 \le j \le n\}$

2. $\max\{|a_0 + a_1\lambda_j + ... + a_n\lambda_j^n|: 1 \le j \le n\}$

3. $\min\{a_0 + a_1\lambda_j + ... + a_n\lambda_j^n : 1 \le j \le n\}$

4. $\min\{1 a_0 + a_1 \lambda_j + ... + a_n \lambda_j^n | 1 \le j \le n\}$

166. Let
$$p(x) = \alpha x^2 + \beta x + \gamma$$
 be a polynomial, where $\alpha, \beta, \gamma \in \mathbb{R}$. Fix $x_0 \in \mathbb{R}$.

Let $S = \{(a,b,c) \in \mathbb{R}^4 : p(x) = a(x-x_0)^2 + b(x-x_0) + c$ for all $x \in \mathbb{R}$. Then the number of elements in S is

1. 0

2. 1

3. strictly greater than 1 but finite

4. infinite

167. Let $A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ and 1 be the 3×3 identity matrix. If $6A^{-1} = aA^2 + bA + cI$ for $a,b,c \in \mathbb{R}$ then 0 0 -3

(a,b,c) equals

1. (1, 2, 1)

2. (1, -1, 2)

3. (4, 1, 1)

4. (1, 4, 1)

Let $A = \begin{bmatrix} 1 & -2 & 5 \end{bmatrix}$. Then the eigenvalues of A are

1. -4, 3, -3

2. 4, 3, 1

3. $4,-4\pm\sqrt{13}$

4. 4, $-2 \pm 2\sqrt{7}$

PART - C

169. Consider the vector space V of real polynomials of degree less than or equal to n. Fix distinct real numbers $a_0, a_1,...,a_k$ For $p \in V$, $max\{|p(a_j)|: 0 \le j \le k\}$ defines a norm on V

2. only if $k \ge n$

3. if $k+1 \le n$

4. if $k \ge n+1$

170. Let V be the vector space of polynomials of degree at most 3 in a variable x with coefficients in R La T = d/dx be the linear transformation on V to itself given by differentiation. Which of the following are correct?

1. T is invertible

2. 0 is an eigenvalue of T

3. There is a basis with respect to which the matrix of T is nilpotent.

4. The matrix of T with respect to the basis $\{1,1+x,1+x+x^2,1+x+x^2+x^3\}$ is diagonal.

171. Let m,n,r be natural numbers. Let A be $m \times n$ matrix with real entries such that (AA')' = l, where $l \nmid k$ the $m \times m$ identity matrix and A^i is the transpose of the matrix A. We can conclude that

I. m=n

2. AA' is invertible

3. A' A is invertible

4. if m=n, then A is invertible

172. Let A be an $n \times n$ real matrix with $A^2 = A$. Then

1. the eigenvalues of A are either 0 or 1 2. A is a diagonal matrix with diagonal entries 0 or 1

3. rank(A) = trace(A)

4. rank(I-A) = trace(I-A)

- For any $n \times n$ matrix B, let $N(B) = \{X \in \mathbb{R}^n : BX = 0\}$ be the null space of B. Let A be a 4×4 matrix A: A = 0 is not diagonalizable A: A = 0 is not diagonalizable A = 0 determinant A = 0 is not diagonalizable A: A = 0 is not dia
- Which of the following 3×3 matrices are diagonalizable over R?

- $4. \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$
- 175. Let H be a real Hilbert space and $M \subseteq H$ be a closed linear subspace. Let $x_0 \in H \setminus M$. Let $y_0 \in M$ be such that $||x_0 y_0|| = \inf\{||x_0 y|| : y \in M\}$. Then

1. such a
$$y_0$$
 is unique 2. $x_0 \perp M$

3.
$$y_0 \perp M$$

4.
$$x_0 - y_0 \perp M$$

176. Let
$$A = \begin{bmatrix} 3 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$$
 and $Q(X) = X^t AX$ for $X \in \mathbb{R}^3$. Then

- 1. A has exactly two positive eigenvalues
 - 2. all the eigenvalues of A are positive
- 3. $Q(X) \ge 0$ for all $X \in \mathbb{R}^3$
- 4. Q(X) < 0 for some $X \in \mathbb{R}^3$

177. Consider the matrix
$$A(x) = \begin{pmatrix} 1+x^2 & 7 & 11 \\ 3x & 2x & 4 \\ 8x & 17 & 13 \end{pmatrix}; x \in \mathbb{R}$$
. Then

- 1. A(x) has eigenvalue 0 for some $x \in \mathbb{R}$
- 2. 0 is not an eigenvalue of A(x) for any $x \in \mathbb{R}$
- 3. A(x) has eigenvalue 0 for all $x \in \mathbb{R}$
- 4. A(x) is invertible for every $x \in \mathbb{R}$

179. Let
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$$
. Then the smallest positive integer n such that $A^n = I$ is

1. 1

2. 2

3. 4

4. 6

180. Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 2 & 3 & \alpha \end{bmatrix}$$
 and $b = \begin{bmatrix} 1 \\ 3 \\ \beta \end{bmatrix}$. Then the system $AX = b$ over the real numbers has

- 1. no solution whenever $\beta \neq 7$.
- 2. an infinite number of solutions whenever $\alpha \neq 2$.
- 3. an infinite number of solutions if $\alpha = 2$ and $\beta \neq 7$
- 4. a unique solution if $\alpha \neq 2$

181. Let
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \in M_2(\mathbb{R})$$
 and $\phi : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ be the bilinear map defined by $\phi(v, w) = v^T A w$.

Choose the correct statement from below:

- I. $\phi(v, w) = \phi(w, v)$ for all $v, w \in \mathbb{R}^2$
- 2. there exists nonzero $v \in \mathbb{R}^2$ such that $\phi(v, w) = 0$ for all $w \in \mathbb{R}^2$
- 3. there exists a 2×2 symmetric matrix B such that $\phi(v, v) = v^T B v$ for all $v \in \mathbb{R}^2$

4. the map
$$\Psi: \mathbb{R}^4 \to \mathbb{R}$$
 defined by $\Psi \begin{bmatrix} v_1 \\ v_2 \\ w_1 \\ w_2 \end{bmatrix} = \phi \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}, \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ is linear

182. Let
$$M = \{A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in \mathbb{Z} \text{ and the eigenvalues of } A \text{ are in } \mathbb{Q}\}$$
. Then
1. M is empty

2. $M = \{\begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in \mathbb{Z}\}$

2.
$$M = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in \mathbb{Z} \}$$

- 3. If $A \in M$, then the eigenvalues of A are in \mathbb{Z}
- 4. If $A,B \in M$ are such that AB=I then $\det A \in (+1,-1)$

- 1. A is necessarily diagonalizable over R.
- 2. If A has distinct real eigenvalues then it is diagonalizable over $\mathbb R$

	3. If A has distinct eigenvalues then it	is diagonalizable over €
	4. If all eigenvalues of A are non-zero	then it is diagonalizable over C.
	Las V has the vector engage over C a C	
184.	the linear operator given by different	It polynomials in a variable X of degree at most 3 . Let $D:V \rightarrow V$ be into with respect to X . Let A be the matrix of D with respect to
	some basis for V. Which of the followi	ing are true?
	1. A is a nilpotent matrix	2. A is a diagonalizable matrix
		0 1 0 0
	3. the rank of A is 2	4. The Jordan canonical form of A is 0 0 1 0 0 0 0 1
		[0 0 0 0]
	F	
185.	1. pI+ A is positive definite	gular matrix A, there exists a positive integer p such that 2. A ^p is positive definite
	3. A ^p is positive definite	4. exp(pA) − I is positive definite
186.		with $n > m$. If for some non-zero real number '\alpha', we have
	x' AA' $x=\alpha x'x$, for all $x \in \mathbb{R}^m$ then A' . 1. exactly two distinct eigenvalues	A has
	2. 0 as an eigenvalue with multiplicity	n-m
	 α as a non – zero eigenvalue exactly two non-zero distinct eigenvalue 	alues
	T. Cauchy in o non 2010	

187.	Let \mathbb{R}^n , $n \geq 2$, be equipped with	ith standard inner product. Let	$\{v_1, v_2,, v_n\}$ be n column vectors forming					
	an orthonormal basis of \mathbb{R}^* . Le	et A be the $n \times n$ matrix formed	by the column vectors v_p ,, v_{κ} . Then					
	$I. A = A^{-1} \qquad 2. A =$	$A^T 3. A^{-I} = A^T$	$4. \ Det(A) = 1$					
188.	Let A be a (m×n) matrix and E							
	1. AB is always nonsingular 3. BA is always nonsingular	2. AB is alway 4. BA is alway						
189.		\mathbb{R} with $Det(A+I) = I + Det(A)$, th	t(A+I) = I + Det(A), then we can conclude that					
	1. $Det(A) = 0$ 2. $A = 0$	3. Tr(A) = 0	4. A is nonsingular					

$$1 \cdot x + 2 \cdot x^2 + 3 \cdot xy + 0 \cdot y = 6$$

$$2 \cdot x + 1 \cdot x^2 + 3 \cdot xy + 1 \cdot y = 5$$

$$1 \cdot x - 1 \cdot x^2 + 0 \cdot xy + 1 \cdot y = 7$$

- 1. has solutions in rational numbers
- 3. has solutions in complex numbers
- 2. has solutions in real numbers
- 4. has no solution

191. The trace of the matrix
$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}^{20}$$
 is 1. 7^{20} 2. $2^{20} + 3^{20}$

$$2 \cdot 2^{20} + 3^{20}$$
 4. $2^{20} + 3^{20}$

192. Let
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$
 and define for $x, y, z \in \mathbb{R}$, $Q(x, y, z) = (x \ y \ z) A \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Which of the

following statements are true?

- 1. The matrix of second order partial derivatives of the quadratic form Q is 2A.
- 2. The rank of the quadratic form Q is 2
- 3. The signature of the quadratic form Q is (++0)
- 4. The quadratic form Q takes the value 0 for some non-zero vector (x, y, z)

193. Let
$$M_n(\mathbb{R})$$
 denote the space of all $n \times n$ real matrices identified with the Euclidean space \mathbb{R}^{n^2} . Fix a column vector $x \neq 0$ in \mathbb{R}^n . Define $f: M_n(\mathbb{R}) \to \mathbb{R}$ by $f(A) = \langle A^2x, x \rangle$. Then

1. f is linear

2. f is differentiable

- 3. f is continuous but not differentiable
- 4. f is unbounded

- 3. V has a countable linear basis
- 4. V is a complete normed space

195. Let V be a vector space over
$$\mathbb{C}$$
 with dimension n. Let $T: V \to V$ be a linear transformation with only I as eigenvalue. Then which of the following must be true?

- 1. T I = 0
- 2. $(T-I)^{n-1}=0$
- $3. (T-I)^n=0$
- 4. $(T-I)^{2n}=0$

```
If A is a (5 \times 5) matrix and the dimension of the solution space of Ax = 0 is at least two, then
\frac{1}{1} \operatorname{Rank}(A^2) \le 3 \qquad 2 \cdot \operatorname{Rank}(A^2) \ge 3 \qquad 3 \cdot \operatorname{Rank}(A^2) = 3 \qquad 4 \cdot \operatorname{Det}(A^2) = 0
```

19. Let
$$A \in M_3(\mathbb{R})$$
 be such that $A^8 = I_{983}$. Then

1. minimal polynomial of A can only be of degree 2

2. minimal polynomial of A can only be of degree 3

3. either
$$A = I_{3\times 3}$$
 or $A = -I_{3\times 3}$
4. there are uncountably many A satisfying the above

198. Let A be an $n \times n$ matrix (with n > 1) satisfying $A^2 - 7A + 12I_{n \times n} = O_{n \times n}$ where $I_{n \times n}$ and $O_{n \times n}$ denote the identity matrix and zero matrix of order n respectively. Then which of the following statements are true?

true?

1. A is invertible

2.
$$t^2 - 7t + 12n = 0$$
 where $t = Tr(A)$

3.
$$d^2 - 7d + 12 = 0$$
 where $d = Det(A)$ 4. $\lambda^2 - 7\lambda + 12 = 0$ where λ is an eigenvalue of A

199. Let A be a (6×6) matrix over \mathbb{R} with characteristic polynomial = $(x-3)^2(x-2)^4$ and minimal polynomial = $(x-3)(x-2)^2$. Then Jordan canonical form of A can be

	(3	0	0	0	0	0)		(3	0	0	0	0	0
	0	3	0	0	0	0		0	3	0	0	0	0
1.	0	0	2	1	0	0	2.	0	0	2	1	0	0
1.	0	0	0	2	1	0	2.	0	0	0	2	0	0
	0	0	0	0	2	1		0		0			
	0	0	0	0	0	2		(0		0			
	(3	0	0	0	0	0)				0			
	0	3	0	0	0	0	4.			0			
3.	0	0	2	1	0	0				2			
٥.	0	0	0	2	0	0				0			
	0	0	0	0	2	1		0		0			
	0	0	0	0	0	2)		(0	0	0	0	0	2,

200. Let V be an inner product space and S be a subset of V. Let \overline{S} denote the closure of S in V with respect to the topology induced by the metric given by the inner product. Which of the following statements are true?

true?

1.
$$S = (S^{\perp})^{\perp}$$

2. $\overline{S} = (S^{\perp})^{\perp}$

3.
$$\overline{span(S)} = (S^{\perp})^{\perp}$$
 4. $S^{\perp} = ((S^{\perp})^{\perp})^{\perp}$