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Formally, let x be a randonw“nbmg the population under investigation. Suppose X has J W

pmf f,(x) = P(x = x) or p d [ f,(x) which depend on some unknown parameter 8 (single or vector

valued) that may have any value in a set ) (called the parameters space). We assume that the M
functional form of f,(x) is known but not the parameter &(except that 8 € Q). For example, the ‘D"

family of distributions {fg(x),8 € Q} may be the family of Poisson distribution {P(4),4 = 0} or

X ——
normal distribution {N(u,0%), = <u < 0,0 = 0}

———

Two problem of statistical inference are-
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POINT ESTIMATION

Definition: A random sample of size ‘n’ from the distribution of X is a set of independent and
identically distributed random variables {x;, x, ..., X, } each of which has the same distribution as

that of X. The probability of the sample is given by

foxy, Xz, 0 x0) = fo(x)fo(x2) . fo ()

Definition: A statistic T = T (x;,xz, . X) is any function of the sample values, which does not
depend on the unknown parameter 6. Evidently, T is a random variable which has its own

probability distribution (called the * Sampling distribution’ of T)
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Theorem : Let (X, Xz,....Xa) be a random sample of ‘n’ observations on X with mean E(X) = g and
P —

variance Var(x) = o7 Let the sample mean and sample variance be ¥ =%E[' x;and s* = —:}_:[.r! —x)* 'y\ 7/
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PROPERTIES OF ESTIMATORS

( UNBIASEDNESS:

An estimator T of an unknown parameter 8 is called unbiased if
— -

c—

E(T)=6dforalld €]
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9’. if [xy,x7 .xy) 15 uMnm’mal distribution N(u,[) show that T =
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a Rless Let (x,,x; ...x;) be a random sample of observation from a Bernoulli distribution
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Example: Show that the mean % of a random sample of size n from the exponential distribution

folx) = I.ll E:u (x > 0) is an unbiased estimator of & and has variance 8% /n
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Example Let (x,, %z ..x;) be arandom sample fi

b.d. f fal

=x=6(8>0)

x) = 1 : .0 VM/
0 otherwise t/ y‘
v v T
Show that T, =2%, T, = %Y,._ and Ty =(n+1)y; are all unbiased for @& , where ¥, = V"D

min(xy, x; .. x,) and ¥y, = max(x;, x; ..x,)
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Example: Let ((x,x3, ... X, ) be a random variable from the Rectangular distribution R(6, 26) having
b.d.f

g n+1 n+1
Show that T =——xm), T2 = —x01)
n+1 n+2 4

And T3 = ,}:f:‘ [2x;.,‘ + X1 ,]ﬂnd Ta= ;\' are all unbiased
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Example: Let y,, v, v, be the order statistics of a randomy/sample of size rom a uniform
distribution ha glf d.f flx,8) = ([1 < 6) show that 4y,, 2y, , all unbiased e

ﬂt‘o (1) * (Q '9) 50494
/h,,, Nﬂ (’3 (QK‘D 5 0L% Ly

A - 2 ©

O
£(9 /9{’/
ely, ) ‘ig:/»go jgﬁ o' Ulw) ’kmo

(Y Y ww

vE —_—y
10 L

of 8. Also oby

YERATE T Ky

/zOﬁJ

e Let ‘T" be an unbiased estimator of . Does it imply that T andVT , are unbiased for
———

#*and \,-"8_} respectively?
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Example let y,,y,, be independent unbiased estimator of 8, having finite variance (of,07,say).

Obtain a linear combination of y,, y, which is unbiased and has the smallest variance.
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Remarks: (i) An unbiased estimator may not exist. Let x be a random variable with Bernoulli

distribution.

fa(2)=08@=6)=*x = 0,1

It can be shown that no unbiased estiatorexists for 6. K\

(if) Unbiased csﬁmatorn‘-

Let X be a random variable having Poisson distribution P(x) and suppose we want estimator g(4)
=¢3*, Consider a sample of one observation and the estimator T= . Then E(T)= e~* so that T is an
unbiased estimator of e~** but T(x)= (-2) * for x even and T(x) < 0 for x odd, which is absurd since
e i always positive.

(iit) Instead of the parameter # we may be interested in estimating a function g(8). () is said to
be ‘estimable’ if there exists an estimator T Such that E(T)= g(6),6 € 22.

Minimum Variance Unbiased (MVU) estimators : The class of unbiased estimators may, in
general, be quite large and we would like to choose the best estimator from this class. Among
two estimators of 6 which are both unbiased , we would choose the one with smaller variance.
The reason for doing this rests on the interpretation of variance as a measure of concentration

about the mean. Thus, if T is unbiased for @, then by Chebyshev's inequality-

? Ui,ﬂ >2X7l -
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Therefore, the smaller Var(T) is, the larger the lower bound of the probability of concentration of T
about # becomes. Consequently, within the restricted class of unbiased estimators we would choose

the estimator with the smallest variance.

Definition: An estimator T =T (Xj,..., X.) is said to be a uniformly minimum variance unbiased

(UMVU) estimator of @ (or an estimator for g(6) if it is unbiased and has the smallest variance
within the class of unbiased estimators of 8 (or g(f),) of all 8 € Q. That is if T is any other

unbiased estimator of @, then-

Wed Y

Suppose we decide to restrict ourselves to the class of all unbiased estimators with finite variance. M
The problem arises as to how we find an UMVU estimator, if such an estimator exists. For this we K
would first determine a lower bound for the variances of all estimators (in the class of unbiased

estimators under consideration) and then would try to determine an unbiased estimator whose

variance is equal to this lower bound. The lower bound for the variances will be given by the [ h
Cramer-Rao inequality for which we assume the following regularity conditions:
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Cramer-Rao inequality: Let (Xi,.., Xa) be a random sample of n observations on X with

p.d.f f(x;8) and suppose the above regularity conditions hold. If T is any unbiased estimator of 8,

e

Var(T) <

then-

1

nE [a%-log fx; 9)]2
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Remark: (i)

(i) 1f g(#) is an estimable function for which an unbiased estimator is T (i.¢

then C.R Inequality becomes-

(iv) If an unbiased estimator exists which is such that its variance is equal to the lower bound

CRB then it will be UMVUE.

1
—
nt|2=log (x|

(v) If there is no unbiased estimator whose variance equals the C R B it does not mean that

UMVUE will not exist. Such estimators can be found (if these exists) by other methods.

(vi) In case of distributions not satisfying the regularity conditions (e.g.: Rectangular distribution)
UMVU estimators, if these exists can be found by other methods. For such cases UMVU estimator

may have variance less than CRB.

Example: Let (x,,...x,) be a random sample from a Bernoulli distribution f(x;8) = 6*(1 -

0)!*(x=01),0<0<1 Ql\' ﬁ’a“g)ﬁ }\Lrﬂ’ + (““) L(J’@)
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Example: Let (x,,.., %) be a random sample from a Poisson distribution

e fg*
Pt

f(x,0) = x=0,1..(0>0)

Show that x is UMVUE of 8.
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