Thursday, November 9, 2023 6:37 PM

Inful grown groom

9062395723

L INFERE...

STATISTICAL INFERENCE

Engle Rome on Sight Uneum Poplakon

Formally, let x be a random variable describing the population under investigation. Suppose X has β .m.f $f_o(x) = P(x = x)$ or β of $f_o(x)$ which depend on some unknown parameter θ (single or vector valued) that may have any value in a set Ω (called the parameters space). We assume that the functional form of $f_0(x)$ is known but not the parameter θ (except that $\theta \in \Omega$). For example, the family of distributions $\{f_{\theta}(x), \theta \in \Omega\}$ may be the family of Poisson distribution $\{P(\lambda), \lambda \geq 0\}$ or normal distribution $\{N(\mu, \sigma^2), -\infty < \mu < \infty, \sigma \ge 0\}$

Two problem of statistical inference are-

Eskmate value of 8

Hyporhem and 8

Hyporhem and 9

Hyporhem a

Sure

POINT ESTIMATION

<u>Definition:</u> A random sample of size 'n' from the distribution of X is a set of independent and identically distributed random variables $\{x_1, x_2, ..., x_n\}$ each of which has the same distribution as that of X. The probability of the sample is given by

$$f_o(x_1, x_2, \dots, x_n) = f_o(x_1) f_o(x_2) \dots f_o(x_n)$$

<u>Definition:</u> A statistic $T = T(x_1, x_2, ..., x_n)$ is any function of the sample values, which does not depend on the unknown parameter θ . Evidently, T is a random variable which has its own probability distribution (called the 'Sampling distribution' of T)

UNBIASEDNESS:

An estimator T of an unknown parameter θ is called unbiased if

 $E(T) = \theta \text{ for all } \theta \in \Omega$

Example Let $(x_1, x_2, ..., x_n)$ be a random sample of observation from a Bernoulli distribution $f_{g}(x) = \theta^x (1 - \theta)^{1-x} (x = 0.1) \text{ show that } T = \frac{y(y-1)}{y(y-1)} \text{ is an unbiased estimator of } \theta \text{ where } y = \sum_{i=1}^n x_i}$ $E(Y) = n\theta \quad V(Y) = n\theta (1 - \theta)$ E(Y) = r(Y) = r(Y) = r(Y) + (r(Y)) + (r(Y)

Example: Show that the mean \bar{x} of a random sample of size n from the exponential distribution $f_{\theta}(x) = \frac{1}{\theta} \bar{e}_{\theta}^{x}(x > 0)$ is an unbiased estimator of θ and has variance θ^{2}/n

$$E(n) = 0 \quad \forall (n) = 0^{2}$$

$$E(n) = 0 \quad \forall (n) = 0^{2}$$

$$= 0 \quad \forall (n) = 0^{2}$$

Example Let
$$(x_1, x_2, ... x_n)$$
 be a random sample from the rectangular distribution $R(0, \theta)$ having $[a, b]$ be $[a, b]$ be a random sample from the rectangular distribution $[a, b]$ having $[a, b]$ be a random sample from the rectangular distribution $[a, b]$ having $[a, b]$ be a random sample from the rectangular distribution $[a, b]$ having $[a, b]$ be a random sample from the rectangular distribution $[a, b]$ having $[a, b]$ be a random sample from the rectangular distribution $[a, b]$ having $[a, b]$ having $[a, b]$ be a random sample from the rectangular distribution $[a, b]$ having $[a,$

Show that $T_1 = 2\overline{x}$, $T_2 = \frac{n+1}{n}Y_n$ and $T_3 = (n+1)\gamma_i$ are all unbiased for θ , where $Y_1 = \min(x_1, x_2, ...x_n)$ and $Y_n = \max(x_1, x_2, ...x_n)$

To obtain the exploitable of Ti, T2 W

If of the Yn Fy (y)= P(4n
$$\leq y$$
)

$$= P(x_{1} \le y_{2}, x_{1} \le y)$$

$$= P(x \le y)$$

$$= P(x \le y)$$

$$= y_{1}$$

$$= y_{2}$$

$$= y_{3}$$

$$= y_{3$$

$$= P(x \le y)$$

$$= P(x \le y)$$

$$= P(x \le y)$$

$$= y$$

$$=$$

Does A ingly put The IT are also UR of OT, ID ?? 906 1395123)

Y(M)

E(T2)-02

Jun 17-0

Jun 17-0

Juni is impossible som Thin he imput of O

(Mind is impossible som Thin he imput of O

(MT) = E(T) - (E(T))

E(T) = TO me V(T) = 0

P(T=0) = P(T=0)

After (NO)

Example: Let $(x_1, x_2, ... x_n)$ be a random variable from the Rectangular distribution $R(\theta, 2\theta)$ having b, d, f

$$f(x,\theta) = \begin{cases} \frac{1}{\theta}, \theta \le x \le 2\theta \\ 0, elsewhere \end{cases}$$

Show that

$$T_1 = \frac{n+1}{2n+1} \chi_{(n)}, T_2 = \frac{n+1}{n+2} \chi_{(1)}$$

And

$$T_3 = \frac{n+1}{5n+4} [2x_{(n)} + x_{(1)}]$$
 and $T_4 = \frac{2}{3} \bar{x}$ are all unbiased

Young love above.

Example let y_1, y_2 , be independent unbiased estimator of θ , having finite variance $(\sigma_1^2, \sigma_2^2, say)$. Obtain a linear combination of y_1, y_2 which is unbiased and has the smallest variance.

Remarks: (i) An unbiased estimator may not exist. Let x be a random variable with Bernoulli distribution.

It can be shown that no unbiased estimator exists for θ^2 .

(ii) Unbiased estimator my be assured:

Let X be a random variable having Poisson distribution P(x) and suppose we want estimator $g(\lambda) = e^{3\lambda}$. Consider a sample of one observation and the estimator T = 0. Then $E(T) = e^{-3\lambda}$ so that T is an unbiased estimator of $e^{-3\lambda}$ but $T(x) = (-2)^x$ for x even and T(x) < 0 for x odd, which is absurd since $e^{-3\lambda}$ is always positive.

(iii) Instead of the parameter θ we may be interested in estimating a function $g(\theta)$. $g(\theta)$ is said to be 'estimable' if there exists an estimator T Such that $E(T) = g(\theta)$, $\theta \in \Omega$.

Minimum Variance Unbiased (MVU) estimators: The class of unbiased estimators may, in general, be quite large and we would like to choose the best estimator from this class. Among two estimators of θ which are both unbiased, we would choose the one with smaller variance. The reason for doing this rests on the interpretation of variance as a measure of concentration about the mean. Thus, if T is unbiased for θ , then by Chebyshev's inequality-

P $\left(\left(\frac{1}{2}-\Theta\right)\right) \leq \left(\frac{1}{2}\right)$

Therefore, the smaller Var(T) is, the larger the lower bound of the probability of concentration of T about θ becomes. Consequently, within the restricted class of unbiased estimators we would choose the estimator with the smallest variance.

<u>Definition:</u> An estimator T = T (X₁,..., X_n) is said to be a <u>uniformly minimum variance unbiased</u>

(UMVU) estimator of θ (or an estimator for $g(\theta)$ if it is unbiased and has the smallest variance within the class of unbiased estimators of θ (or $g(\theta)$,) of all $\theta \in \Omega$. That is if T is any other unbiased estimator of θ , then-

Suppose we decide to restrict ourselves to the class of all unbiased estimators with finite variance. The problem arises as to how we find an UMVU estimator, if such an estimator exists. For this we would first determine a lower bound for the variances of all estimators (in the class of unbiased estimators under consideration) and then would try to determine an unbiased estimator whose variance is equal to this lower bound. The lower bound for the variances will be given by the Cramer-Rao inequality for which we assume the following regularity conditions:

hums

Android > Windwen > Bylle 7 Marel, Word > Smisson

<u>Cramer-Rao inequality</u>: Let $(X_1,...,X_n)$ be a random sample of n observations on X with $[b.d.ff(x;\theta)]$ and suppose the above regularity conditions hold. If T is any unbiased estimator of θ , then-

(ii) If $g(\theta)$ is an estimable function for which an unbiased estimator is $T(i.e. E(T) = g(\theta))$ then C.R Inequality becomes-

$$V(T) \ge \frac{[\varphi(\theta)]^2}{nE\left[\frac{\partial}{\partial \theta}\log f(x,\theta)\right]^2}$$

$$E\left[\frac{\partial}{\partial \theta}\log f(x;\theta)\right]^{2} = -E\left[\frac{\partial^{2}}{\partial \theta^{2}}\log f(x;\theta)\right]$$

- (iv) If an unbiased estimator exists which is such that its variance is equal to the lower bound $\frac{1}{nE\left[\frac{\partial}{\partial \theta}\log f(x.\theta)\right]^2}$ then it will be UMVUE.
- (v) If there is no unbiased estimator whose variance equals the CRB it does not mean that UMVUE will not exist. Such estimators can be found (if these exists) by other methods.
- (vi) In case of distributions not satisfying the regularity conditions (e.g.: Rectangular distribution) UMVU estimators, if these exists can be found by other methods. For such cases UMVU estimator may have variance less than CRB.

Example: Let $(x_1, ... x_n)$ be a random sample from a Bernoulli distribution $f(x; \theta) = \theta^x (1 - \theta^x)$

$$\theta$$
)^{1-x}(x = 0.1), 0 < θ < 1

let
$$f(x;\theta) = \lambda \log + (1-x) \ln(1-x)$$

 $E \left(\frac{\partial}{\partial x} \int_{0}^{1} (1-x) dx + \frac{\partial}{\partial x} \int_{0}^{1} (1-x$

$ \begin{array}{ccc} & m & m \\ & m & m \end{array} $)N)
Example: Let x be a random sample having Binomial distribution)
$f(x,\theta) = {m \choose x} \theta^x (1-\theta)^{m-x}; x = 0,1,, m(0 < \theta < 1)$ Show that \bar{x}/m is UMVUE of θ .	h(1-8)
Show that $\sqrt[x]{m}$ is UMYUE of θ . $ \int_{0}^{\infty} \int_{0}$,
2 htm, 07- 1/0+ 1-0	
19 (1-8)	
So, unt, E 30 dos 1(1,0) = E(x-40)2 02(1-0)2	
$=\frac{m\theta\left(1-\theta\right)}{\theta^{2}\left(1-\theta\right)}=\left(\frac{m}{Q\left(1-\theta\right)}\right)$	
02(1-0)~ (0(1-0)	
E(7m)=0, m(7m)-0(10)	
Some, Then is unue of D.	
Julia I I I I I I I	

Example: Let $(x_1,,x_n)$ be a random sample from a Poisson distribution $e^{-\theta}\theta^x$
$f(x,\theta)=\frac{e^{-\theta}\theta^x}{x}; x=o,1\ldots\ldots(\theta>0)$ Show that x is UMVUE of θ .

