Derivative of Hyperbolic Functions

$$sinhx = (e^{x} - e^{-x})/2.$$

$$cosh x = (e^{x} + e^{-x})/2.$$

Assume $\arcsin hx = y$, then we have $x = \sinh y$.

$$\cosh^2 x - \sinh^2 x = 1$$

$$\operatorname{suh}^{2} n = \frac{1}{4} \left(e^{2x} + e^{-2x} - 2 \right)$$

$$\operatorname{cnh}^{2} n = \frac{1}{4} \left(e^{2x} + e^{-2x} + 2 \right)$$

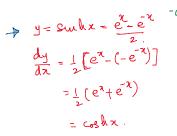
Function	Derivative	Domain
sinhx	coshx	-∞ < x < ∞
coshx	sinhx	-∞ < x < ∞
tanhx	sech ² x	-∞ < x < ∞
cothx	-csch ² x	x≠0 ✓
sechx	-sechx tanhx	-∞ < x < ∞
cschx	-cschx cothx	x≠0

arcsinhx	$1/\sqrt{(x^2+1)}$	-∞ < χ < ∞
arccoshx	1/√(x² - 1)	x > 1
arctanhx	1/(1 - x ²)	x < 1
arccothx	1/(1 - x ²)	x > 1
arcsechx	-1/x√(1 - x ²)	0 < x < 1
arccschx	-1/ x √(1 - x ²)	x ≠ 0

$$axc con x = y$$

$$U.$$

$$x = con y$$



Cof
$$0x = \frac{\cosh x}{\sinh x}$$

$$= \frac{e^{x} + e^{x}}{e^{x} - e^{x}} + 0$$

$$e^{x} = \frac{e^{x} + e^{x}}{e^{x} + e^{x}}$$

$$e^{x} = \frac{e^{x} + e^{x}}{e^{x} + e^{x}}$$

$$e^{x} = \frac{e^{x} + e^{x}}{e^{x} + e^{x}}$$

$$y = \operatorname{arcsuh} x. \implies (\operatorname{suh} y) = \frac{1}{|x|} ($$

$$\int_{-\infty}^{\infty} \frac{dx}{dx} = \int_{-\infty}^{\infty} \frac{dy}{dx} = \frac{1}{\ln x} = \frac{1}{\sqrt{1+x^2}}$$

$$cosh y - suh y = 1$$

$$cosh^2y = 1 + cuh^2y$$

$$= (+x^2)$$

$$hy) \cdot \frac{dy}{dx}$$

Leibniz Rule

Leibniz Rule

$$(f(x) \cdot g(x))^{n} = \sum_{r=0}^{n} {}^{n}C_{r} f^{(n-r)}(x) \cdot g^{r}(x)$$

Finduct rule

$$y = uv \cdot u = f(x) \quad v \circ g(x)$$

$$y' = u'v + v'u \cdot u \cdot u = f(x) \quad v \circ g(x)$$

$$y' = u'v + v'u \cdot u \cdot u = f(x) \quad v \circ g(x)$$

$$y' = u'v + v'u \cdot u \cdot u = f(x) \quad v \circ g(x)$$

$$y' = u'v + v'u \cdot u \cdot u = f(x) \quad v \circ g(x)$$

$$y' = u'v + v'u \cdot u \cdot u = f(x) \quad v \circ g(x)$$

$$y' = u'v + v'u \cdot u \cdot u = f(x) \quad v \circ g(x)$$

$$= (u^{2}v + 2u'v' + v^{2}u) \cdot u = (u^{2}v + 2u'v' + v^{2}u) \cdot u = (u^{2}v + 2u'v' + v^{2}u) \cdot u = (u^{2}v + 2u'v' + v^{2}u)$$

$$= (u^{2}v + 3u^{2}v' + 3u'^{2}v' + 2u'v' + v^{2}u \cdot u = (u^{2}v + 2u'v' + v^{2}u) \cdot u = (u^{2}v + 3u'^{2}v' + 3u'^{2}v' + v^{2}u) \cdot u = (u^{2}v + 3u'^{2}v' + 3u'^{2}v' + v^{2}u) \cdot u = (u^{2}v + 3u'^{2}v' + 3u'^{2}v' + v^{2}u \cdot u = (u^{2}v + 2u'v' + u^{2}v' + u^{2}u \cdot u = (u^{2}v +$$

$$y'' = u^2 + 2u'v' + v^2$$

= $(ax+b)^n + 2na(ax+b)^n conn + su^2n$.

L'Hospital's Rule Formula

if
$$\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0 ext{ or } \pm \infty, g'(x) \neq 0 ext{ for all } x ext{ in } I ext{ with } x \neq c$$
 , and

$$\lim_{x o c} rac{f'(x)}{g'(x)}$$
 exists, then

$$\lim_{x\to c}\frac{f(x)}{g(x)}=\lim_{x\to c}\frac{f'(x)}{g'(x)}.$$

$$\lim_{x\to 0} \frac{x(e^x-1)}{1-\cos x}$$

• Reduction formulae, derivations and illustrations of reduction formulae of the type $\int \sin^n x \, dx$, $\int \cos^n x \, dx$, $\int \tan^n x \, dx$, $\int \sec^n x \, dx$, $\int (\log x)^n dx$,

$$\int \sin^5 x \cos^3 x dx$$

$$e^{2x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$e^{i0} = 1 + \frac{i0}{1!} + \frac{i^{2}0^{2}}{2!} + \frac{i^{3}0^{3}}{3!} + \frac{i^{4}0^{4}}{4!} + \cdots$$

$$= 1 + \frac{i0}{1!} - \frac{0^{2}}{2!} - \frac{i0^{3}}{3!} + \frac{0^{4}}{4!} + \cdots$$

$$= \left(1 - \frac{0^{2}}{2!} + \frac{0^{4}}{4!} + \cdots\right) + \frac{i0}{1!} \left(\frac{0}{1!} - \frac{0^{3}}{3!} + \frac{0^{5}}{5!} - \cdots\right)$$