depate matrof $n \times n \rightarrow$ symatric $x^{\top} A X>0 \quad x \rightarrow n \pi i n e t r y$
 tredfre
$X^{\top} A X \geqslant 0$ tre semidefrice <0 ive dyn so -ve gen-dy
 $\begin{aligned} & \text { following are positive definite. } \\ & \begin{array}{l}\text { I. } A+B\end{array} \quad \text { 2. } A B A\end{aligned}$ 3. $A^{2}+I$, AB
Let N be a 3×3 nonzero matrix with the property $N^{\prime}-0$. Which of the following is/are true?

$$
G M \rightarrow 3
$$

8. Let $a_{i j}=a_{i} a_{j}, 1 \leq i, j \leq n$, where a_{i}, \ldots, a_{n} are real numbers. Let $A=\left(\left(a_{i j}\right)\right)$ be the $n \times n$ matrix $a_{a j}$, A,, Then
9. the matrix A is positive definite if $\left(a_{1}, \ldots, a_{n}\right)$ is a non-zero vector.
10. the matrix A is positive semidefinite for all $\left(a_{p}, \ldots, a_{n}\right)$.
11. for all $\left(a_{1}, \ldots, a_{n}\right)$, zero is an eigenvalue of A.
t at lear I nom-zen EV Then
12. $\|T x\|=\lambda \mid\|x\|$ for $x \in \mathbb{R}^{\text {: }}$.
13. If $\|T x\|=\|x\|$ for some non-zero vector $x \in \mathbb{R}^{n}$, then $\lambda= \pm 1$
14. $T=\lambda I$, where I is the identity transformation on \mathbb{R}^{n}.

15. Let $W=\left\{p(B): p\right.$ is a polynomial with real coefficients, where $B=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$. The dimestiad
of the vector space W satisfies
16. $4 \leq d \leq 6$
17. $6 \leq d \leq 9$
18. $3 \leq d \leq 8$
19. $3 \leq d \leq 4$
$S_{3}=[x \in M: \operatorname{tran}(A x)=0$

20. The determinant of the matrix $\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 0 & 0 & 1\end{array}\right]$ is

21. For a positive integer n, let P_{n} denote the space of all polynomials $p(x)$ with coefficients in \mathbb{R} such that $\operatorname{deg} p(x) \leq n$, and let B_{n} denote the standard basis of P_{n} given by $B_{n}=\left\{1, x, x^{2}, \ldots, x^{n}\right\}$. If $T: P_{3} \rightarrow P_{4}$ is the linear transformation defined by $T(p(x))=x^{2} p^{\prime}(x)+\int_{0}^{x} p(t) d t$ and $A=\left(a_{i j}\right)$ is the 5×4 matrix of T with respect to standard bases B_{3} and B_{p} then

> 1. $a_{32}=\frac{3}{2}$ and $a_{33}=\frac{7}{3}$
> 3. $a_{32}=0$ and $a_{33}=\frac{7}{3}$
2. $a_{32}=\frac{3}{2}$ and $a_{33}=0$
4. $a_{32}=0$ and $a_{33}=0$
14. Let A be a 5×4 matrix with real entries such that the space of all solutions of the linear system $A X^{\prime}=[1,2,3,4,5]^{\prime}$ is given by $\left\{[1+2 s, 2+3 s, 3+4 s, 4+5 s]^{\prime}: s \in \mathbb{R}\right)$. (Here, M denotes the transpose of a

[^0]
[^0]: - $4+$ to -.....nl in

