Q. Consider the standard $15-L M$ Model. If the economic agents have inflationary expectations $\left(\pi^{e}>0\right)$, then investment is responsive to real interest (r), ie $I=I(M), \frac{\partial I}{\partial r}<0$. and the money demand is responsive to nominal intersect (i), ie $L=L(i, y), \frac{\partial L}{\partial i}<0, \frac{\partial L}{\partial y}>0$ Analyze the impact of inflationany expectations on output \& interest mates in the $L S-L N 1$ Model. [Relation $b / \omega M$ \& i : $r=i-\pi^{c}$].

Original $1 S-L M:\left(\pi^{e}=0\right)(r=i) ; M o d i f i c d \quad \mid S-L M \quad\left(\pi^{e}>0\right)$
Is: $\quad Y=C(Y-T)+I(r)+G$
$L M: \quad \frac{\bar{M}}{P}=L(Y, M)$

$$
\text { Is: } Y=C(Y-T)+I(r)+G
$$

3 variables: Y, M, i

15: $Y=C(Y-T)+I\left(i-\pi^{C}\right)+G$
$L M: \frac{\bar{M}}{P}=L(Y, i)$
$\pi^{e}>0 \Rightarrow M=i-\pi^{e} \downarrow \Rightarrow I \uparrow \Rightarrow A D \uparrow \Rightarrow$ shift might $\overrightarrow{Y_{1}} Y_{2}$.
$i \bar{Y}, i \uparrow, M \downarrow$, Outcome of $\pi^{e}>0$.
Derivation of the $A D$ curve:
AD: Locus of (Y, P) constructed from $1 S-L M$ Model. $\left.P_{2} P_{1} P_{1}\right)$

$$
L M: \frac{\bar{M}}{P}=L(Y, i)
$$

$$
M=i-\pi e \Rightarrow M<i
$$

M: $\frac{\bar{M}}{P}=L(Y, i)_{L M}$

- (1, r) constmucled from 15 -LM Model. $\mathrm{T}^{(P)}$

B: $Y=C(Y-T)+I(r)+G$.
$L M: \frac{\bar{M}}{P}=L(Y, r)$

$$
P \uparrow \Rightarrow\left(\frac{\bar{M}}{P}\right) \downarrow \Rightarrow L M \text { shift left. }
$$

Bs: $\left[1-c^{\prime}(1-t)\right]-\gamma+b_{\mu}=\bar{c}+\bar{L}+\bar{G} P_{2}$
LM: $\quad k \cdot Y-h r=\frac{\bar{M}}{P}$.
Find: $\frac{d p}{d r}$

Diff: $\left[1-c^{\prime}(1-t)\right] \cdot d Y+b \cdot d r=0 \ldots$ (i)

$$
\begin{align*}
& k \cdot d y-h \cdot d r=-\frac{M}{p^{2}} d p \tag{ii}\\
& \frac{1}{h} \cdot\left[k \cdot d y+\frac{M}{p^{2}} \cdot d p\right]=d r
\end{align*}
$$

Putting in (i): $\left[1-c^{\prime}(1-t)\right] \cdot d y+\frac{b}{h}\left[k \cdot d y+\frac{M}{p^{2}} \cdot d p\right]=0$

$$
\begin{aligned}
& {\left[1-c^{\prime}(1-t)+b \cdot \frac{k}{h}\right] \cdot d y=-\frac{b}{h} \cdot \frac{M}{p^{2}} \cdot d p} \\
& \left.\frac{d p}{d y}\right|_{A D}=-\frac{\left[1-c^{\prime}(1-t)+b \cdot k / h \cdot\right]}{\frac{b}{h} \cdot \frac{M}{p^{2}}}<0
\end{aligned}
$$

AD-AS Model
Supply side:
Labour markets are characterized by wage rigidity $(W=\bar{W})$ due to presence of trade unions.

Let the production by $Y=r(L, \bar{K}), Y_{L}>0, Y_{L L}<0$
Producers will choose the optimal ant of factor-inputs based on π-max.

$$
\pi=P \cdot Y(L, \bar{K})-\bar{W} \cdot L-M \cdot \bar{K} \ldots\left(\begin{array}{l}
P \cdot Y_{L}=\bar{W} \\
\frac{\partial \pi}{\partial L}=0 \Rightarrow \bar{\omega}=0 \Rightarrow \begin{array}{l}
\text { optimization } \\
\text { condition in } \\
\text { the factor mkt. }
\end{array}
\end{array}\right.
$$

Note: $\left.P \cdot r_{L}=\bar{W}\right) \Rightarrow$ opt L at every Level of P.
\Rightarrow putting opt. L in prod for \Rightarrow opt.
Locus of $(P \& Y) \Rightarrow$ As curve.
Prodnfn: $Y=Y(L, \bar{K}),\left[\begin{array}{r}Y_{L}>0, Y_{L L} \leq 0 \\ \cdots\end{array}\right)$ (i)
Opt condition: $r_{L}=\frac{\bar{\omega}}{p} \cdots(\dot{u})$
ramiables: $P, L, Y \Rightarrow$. Find $\left.\frac{d P}{d y}\right|_{\text {AS }}$
Diff: $\quad d y=Y_{L} \cdot d L$.

$$
r_{L L} \cdot d L=-\frac{\bar{\omega}}{p^{2}} \cdot d p
$$

(i) $\Rightarrow d L=\frac{d y}{Y_{L}}$.

Putting in (i): $\quad Y_{L L} \cdot\left(\frac{d y}{Y_{L}}\right)=-\frac{w}{p^{2}} \cdot d p$

$$
\left.\frac{d p}{d y}\right|_{A s}=\frac{Y_{L L} / Y_{L}}{-w / p^{2}}>0
$$

Equillibrium in Macroeconomy:
Counter-recessionary macroeconomic policies:

noirr-meccssiunary machoelonomie policies:
i) Fiscal Expansion ($G \uparrow$)

$G \uparrow \Rightarrow 1 s$ curve shift right \Rightarrow AD shift right.
u) Monetary Expansion ($M \uparrow$)
$M \uparrow \Rightarrow L M$ shifts might $\Rightarrow A D$ shifts might

Compare Fiscal Expansion in $15-L M$ \& $A D$ - As Model: Govt increases exp by amt $d G>0$.

$$
G \uparrow \Rightarrow A D \uparrow \Rightarrow \text { IS - shifts mights. }
$$

outcome: $Y \uparrow, r \uparrow$ [1s-LM Model $]$.
But in ADAs Model:
$A D \uparrow \Rightarrow A D$ curve shifting right
$p \uparrow \Rightarrow L M$ partly shifts left \Rightarrow
Expansionary fiscal policy is partly

crowded out, i.e output increases but lesser as compared to the LS-LM Model.

$$
\left.\therefore \quad \frac{d y}{d G}\right|_{I S-\angle M}>\left.\frac{d \varphi}{d G}\right|_{A D-A S}
$$

\therefore In general: $:\left.\frac{d y}{d G}\right|_{S K M}>\left.\frac{d y}{d G}\right|_{\mid S-L M}>\left.\frac{d y}{d G}\right|_{A D-H P}$

