

$$
\begin{aligned}
\text { Tramplyharl } \Rightarrow & e^{x} \rightarrow e^{2 x} \\
& e^{x} \rightarrow e^{x / 2}
\end{aligned}
$$

1. The number of real solutions of the equation
ex $-|x|=0$ is
(a) 0
(b) 1
(c) 2
(d) None of these
2. The number of real solutions of the equation $3^{-|x|}-2^{|x|}=0$ i.
(a) 0
(b) 1
(c) 2
(d) 3
3. The number of solutions of $3^{|x|}=|2-|x||$ is
(a) 0
(b) 2
(c) 4
(d) infinite
4. The total number of solutions of the equation $\left|x-x^{2}-1\right|=\left|2 x-3-x^{2}\right|$ is
(a) 0
(b) 1
(c) 2
(d) infinitly many

$$
(4)\left\{\begin{array}{ll}
f(x) \\
x-x^{2}-1 \mid
\end{array}=\left|1 x-3-x^{2}\right|\right.
$$

$$
\begin{aligned}
& y=n-n^{2}-1 \\
& \rightarrow\left(n-\frac{1}{2}\right)^{2}=-(n+3 / 4) \& \text { Pasubcla }
\end{aligned}
$$

vestere $\left(-\frac{1}{2},-3 / 4\right)$
aNo, $g(x)=2 x-3-x^{2}$

$$
\text { (7) } \quad \begin{aligned}
& 2 \text { soln } \\
& 1+3^{n / 2}=2 \frac{x}{1}, 2^{n}(\text { Sreper })
\end{aligned} \quad \begin{aligned}
& 2^{*} 3^{0 / 2}=1
\end{aligned}
$$

8. The equation $x^{2}-2=[\sin x]$, where [] denotes the greatest integer function, has (a) infinity many roots
exactly one integer root
9. Consider the function $f(x)=\left\{\begin{array}{cl}x-[x]-\frac{1}{2}, & \text { if } x \notin I \\ 0, & \text { if } x \in I\end{array}\right.$, where [] denotes greatest integer function and I is the set of integers, then $g(x)=\max \left\{x^{2}, f(x),|x|\right\},-2 \leq x \leq 2$ is defined as

(a) $x^{2},-2 \leq x \leq-1$
(b) $1-x,-1<x \leq-\frac{1}{4}$
(c) $\frac{1}{2}+x,-\frac{1}{4}<x<0$
(d) $1+x, 0 \leq x<1$
10. If $f(x)$ is defined on $[-2,2]$ and is given by
$f(x)=\left\{\begin{array}{cc}-1, & -2 \leq x<0 \\ x-1, & 0<x \leq 2\end{array}\right.$ and $g(x)=f|x|+|f(x)|$, t
$g(x)$ is defined as
(a) $-x,-2 \leq x \leq 0$
(b) $x,-2 \leq x \leq 0$
(c) $0,0<x \leq 1$
(d) $2(x-1), 1<x \leq 2$

$$
\begin{aligned}
& f(x)=\begin{array}{cc}
-1 & -2 \leq x<0 \\
x-1 & 0<x \leq 2
\end{array} \\
& g(x)=f(|x|)+|f(x)|
\end{aligned}
$$

$$
g(x)=f(|x|)+|f(x)|
$$

Derratios and haghs
(1s)

$$
\begin{aligned}
& y=x^{3}-3 x \\
& \frac{d y}{d x}=3 x^{2}-3=0 \Rightarrow 3 x^{2}=3 \Rightarrow x= \pm 1 \\
& \frac{d^{2} y}{d x^{2}}=6 y \quad \text { at } x+1 \quad \begin{array}{l}
d^{2} y \\
d x
\end{array} y^{2 x}<0 \frac{-\sin m}{d x^{2}}<0 \text { max }
\end{aligned}
$$

(nv) $y=x^{3}, 3 x$
(a) $\begin{array}{ll}x=1 & y=-2 \\ x=-1 & (1,-2) \\ y & =2\end{array}$ $a=-1 \quad y=2(-1,2)$

- $(-1,2)$

ffor to lum $y=x^{3}-3 x$
(a) $x=0 \quad y=0^{3}-3.0$ $=0$
Uss of dormaive foid ay Cure

Sove me eqwhe $\frac{d^{2} y}{d x^{2}}, \frac{d y}{d x}=0$
find re mop, min clue inother Bruer uroygh Ongion

Bown

$$
y=|x-7|
$$

$$
y=(x+3)
$$

find $S_{0}{ }^{n}$ n $80-B$

