Basics

Facts rial \rightarrow

$$
\begin{aligned}
& 5!_{0}=5 \times 4 \times 3 \times 2 \times 1=120 \\
& n!=n(n-1)(n-2) \ldots 3.2 .1
\end{aligned}
$$

$$
n!=n(n-1)!\quad=n[(n-1)(n-2) \ldots 3.2 .1]=n(n-1)!
$$

$$
1!_{0}=1,2!_{0}=2,3!=6, \quad 4!=24,5!_{0}=120, \quad 6!=720 \quad 7!=5040,8!=40320
$$

Indian
system

International

Modulus

$$
\begin{aligned}
& 1 \text { trillion }=10^{12}=1000000000000 \\
& 1 \text { billion }=10^{9}=1000000000 \\
& 1 \text { million }=10^{6}=1000000 \\
& 1 \text { crore }=10^{7}=100 \text { lakh } \\
& 10 \text { lakh }=10^{6}=1 \text { million } \\
& 1 \text { lakh }=10^{5}=100000=100 \text { thousand } \\
& 1 \text { thousand }=10^{3}=1000
\end{aligned} \quad|x|= \begin{cases}x, & x \geqslant 0 \\
-x, & x<0\end{cases}
$$

Exponents
(1) $a^{m} \cdot a^{n}=a^{m+n}$
(2) $a^{m / a^{n}}=\begin{aligned} m-n & a^{m}, \\ & \text { orl/amo, } a^{n-m},\end{aligned}$
(3) $\left(a^{m}\right)^{n}=$
(4) $a^{n} \cdot b^{n}=(a b)^{n}$

$$
(5) \quad a^{-n}=1 / a^{n}, \quad a \neq 0
$$

(*) (6)
$b)^{2}=a^{2}+2 a b+b^{2}$

$$
a^{0}=1
$$

(i) $(a+b)^{2}=a^{2}+2 a b+b^{2}$

Pascal's
(iii) $a^{2}-b^{2}=(a+b)(a-b)$
(iv) $(x+a)(x+b)=x^{2}+(a+b) x+a b$
(v) $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$ (HW؟ prove)
*)

$$
\begin{aligned}
& (a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)=a^{3}-3 a^{2} b+3 a b^{2}-b^{3} \\
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \quad a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
\end{aligned}
$$

(*) Squares \rightarrow 1 to 20 , Cubes $\rightarrow 1$ to 10

Questions

1. $\quad \stackrel{287 \times 287}{ }+269 \times 269-2 \times 287 \times 269=$? $\quad(287-269)^{2}=18^{2}=324$
(a) 534
(b) 446
(c) 354
(d) 324
2. If $(64)^{2}-(36)^{2}=20 \times x$, then $x=$?
(a) 70
(b) 120
(c) 180
(d) 140
$(64-36)(64+36)$
(*) 3. If $\sqrt{3}=1.732$ and $\sqrt{2}=1.414$, the value of $\frac{1}{\sqrt{3}+\sqrt{2}}$ is
(a) 0.064
(b) 0.308
(c) 0.318
(d) 2.146
