Trigonometry
Wedneday, May 17, 2023 1200 PM

$$\frac{1}{2}$$
 yie $\left(22\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ is $\left(10\sqrt{3}, \frac{1}{2}\right)$
 $\frac{1}{2}$ yie $\left(22\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
 $\frac{1}{2}$ sin $\left(10\sqrt{3}, \frac{1}{2}\right)$
 $\frac{1}{2}$ $\frac{1}{2}$ sin $\left(10\sqrt{3}, \frac{1}{2}\right)$
 $\frac{1}{2}$ $\frac{1}{2}$ sin $\left(10\sqrt{3}, \frac{1}{2}\right)$
 $\frac{1}{2}$ $\frac{1}{$

Logarithm
Thursday, May 25, 2023 200 PM (1)
$$\log_{2} a^{2} = 1$$
 (2) $\log_{3} a^{1} = 0$
(2) $\log_{3} a^{1} + \log_{3} a^{2}$ (24) $\log_{3} a^{2} = 2$ $\sum_{1}^{3} \sum_{1}^{3} a^{2} = \log_{3} a^{2} = 1$
(3) $\log_{3} a^{1} = 1$ (4) $\log_{3} a^{2} = 2$ $\log_{3} a^{1} = 2$ $\log_{3} a^{1} = 1$
(4) $\log_{3} a^{1} = 2 \log_{3} b^{-1} = 2 \log_{3} a^{1} = 2$ $\log_{3} a^{1} = 1$
(5) $\log_{4} a^{2} = \log_{3} b^{-1} \log_{2} a^{2}$ (base changing forwula)
(6) $\log_{4} a^{1} = \frac{1}{9} \log_{4} b^{-1} (2) (2\sqrt{2})^{-1/3} = \sqrt{2}$ (base changing forwula)
(6) $\log_{4} a^{1} = \frac{1}{9} \log_{4} b^{-1} (2) (2\sqrt{2})^{-1/3} = \sqrt{2}$ (2) $(2\sqrt{2})^{-1/3} = \sqrt{2}$ (3) $\log_{4} a^{1} = \frac{1}{9} \log_{4} b^{-1} =$

-

Blank

Thursday, May 25, 2023 2:00 PM