Freq-distn \Rightarrow Construct the Histogram. [Skewness of the Distribution]

Left-skewed/
Positively skewed distribution.

Symmetrical
distribution

Right-skewed/
Negatively skewed distribution

$$
\mu=\operatorname{Mean}, \tilde{\mu}=\operatorname{Median}, \mu_{0}=\text { Mode }
$$

No. of bins $=1 .+3.3 * \log _{10}(31)=5.92 \simeq 6$.
Lowest $x=36$.
\rightarrow No. A intervale $=5$
Highest $x=99$
Length of each interval $=\frac{99-36}{5}=\frac{63}{5}=12$.

$$
\begin{aligned}
& 36-48 \\
& 48-60 \\
& 60-72 \\
& 72-84 \\
& 84-99
\end{aligned}
$$

How old is the oldest person you know who is currently alive? 31 responses from a statistics class were as follows.
75) $90,60,95,85,84,76,74,92,62,83,80,90,65,72,79,36,78,65,98,70,88,99$, $60,82,65,79,76,80,52,75$
(i) Draw a histogram for the age data.
(ii) Plot Kernel density estimates on the histogram.
(iii) Plot the empirical distribution function for the age data

$$
\begin{aligned}
& \therefore(\hat{f}(x))=\frac{1}{2 n h}\left\{\# x_{i} \in\left(x^{v}-h, x+h\right)\right\} \\
& n=5 . \quad \hat{f}(75)=\frac{1}{2 \times 5 \times 12}\left\{\# x_{i} \in(75-12,75+12)\right\} \\
& h=12 \text {. } \\
& =\frac{1}{120}\left\{\# x_{i} \in(63,87)\right\} \\
& =\frac{19}{120}= \\
& F_{n}(x)=\frac{1}{n}\left\{\# x_{i} \leqslant x\right\} \\
& F_{n}(75)=\frac{1}{31}\left\{\# x_{i} \leqslant 75\right\}
\end{aligned}
$$

