Expectation and Variance of a Random Variable:

Expectation: $E(x)=\int \sum_{x}(x) \underbrace{P(X=x)}$, if x is discrete

$$
\left\{\begin{array}{l}
\int_{x}^{x} x \underbrace{\int_{\text {mass fuixn }}^{f(x)} d x, \text { if } x \text { in }}_{\text {pd.f.f.f }} \begin{array}{l}
\text { probability }
\end{array} \\
\int_{\text {continuous }}
\end{array}\right.
$$

Properties:
density furn.

1) If $x=c$ (court), then $E(x)=c$.
2) If $y=c x(c=$ court $)$, then $E(y)=C E(x)$
3) If $y=a+b x$ where $a,(b \neq 0)$ are courts, then $E(y)=a+b E(x)$ [combining (1) \& (2)]
4) $z=x+y$, then $E(z)=E(x)+E(y)$.
G Sum Law of Expectation:
5) $z=x \cdot y$, then $E(z)=E(x) \cdot E(y)$, if x
and y are independent random variables.

Variance: $\quad V(x)=E\left(x^{2}\right)-\{E(x)\}^{2}=\frac{E\left(x^{2}\right)-E^{2}(x)}{\Longrightarrow \frac{1}{n} \sum x_{i}^{2}-\bar{x}^{2}}$
Alternative: $V(x)=E[x-E(x)]^{2}$

$$
\longrightarrow \frac{1}{n} \sum\left(x_{i}-\bar{x}\right)^{2}
$$

In general,

$$
E[g(x)]= \begin{cases}\sum_{x} g(x) P(x=x), & \text { if } x \text { in } \\ & \text { discrete } \\ \text { Rr } \\ \int_{x} g(x) f(x) d x, & \text { if } x \text { in } \\ \text { continuous } \\ R v\end{cases}
$$

Now, Take $g(x)=x^{2}$, then,

$$
r<\cdots \cdots i \quad l \quad x \text { in dirdaotis }
$$

Now, Take $g(x)=x^{2}$, then,

$$
E\left(x^{2}\right)=\left\{\begin{array}{l}
\sum_{x} x^{2} P(x=x), \text { if } x \text { in discrete } \\
\int_{x} x^{2} f(x) d x, \text { if } x \text { in continuous } \\
R r^{x}
\end{array}\right.
$$

Cowrider, $\quad g(x)=[x-E(x)]^{2}$

$$
E[g(x)]=\underbrace{E[x-E(x)]^{2}}_{\text {Alternative } V(x) \text { formula }}= \begin{cases}\sum_{x}\{x-E(x)\}^{2} P(x=x), & i f x \text { in discrete } \\
\int_{x}\{x-E(x)\}^{2} f(x) d x, & \text { if } x \text { in } \begin{array}{l}
\text { continuous } \\
\text { Rr }
\end{array}\end{cases}
$$

Properties:

1) If $x=c$ (cont), then $v(x)=0 \cdot \infty \cdot p 1$.
2) If $y=b x,(b=\cos t)$, then $v(y)=b^{2} v(x)$

Note that, if $y=a+b x$, where, $a,(b \neq 0)$
are counts, then $v(y)=b^{2} \sqrt{ }(x)$, as variance does not depends on change of origin.

$$
\begin{aligned}
& V(y)=y(a+b x) \\
& y=a+b x \\
& y^{2}=(a+b x)^{2} \\
& V(y)=E\left(y^{2}\right)-E^{2}(y) \\
& =a^{2}+b^{2} x^{2} \\
& =E\left(a^{2}+b^{2} x^{2}+2 a b x\right) \\
& +2 a b x \text {. } \\
& -\{E(a+b x)\}^{2} \\
& =a^{2}+b^{2} E\left(x^{2}\right)+2 a b E(x) \\
& -\{a+b E(x)\}^{2} \\
& =a^{2}+b^{2} E\left(x^{2}\right)+2 a b E(x) \\
& -\left\{a^{2}+b^{2} E^{2}(x)+2 a b E(x)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& -\left\{A^{2}+b^{2} E^{2}(x)+2 a b E(x)\right\} \\
= & b^{2}\left\{E\left(x^{2}\right)-E^{2}(x)\right\}=b^{2} \sqrt{(x)}
\end{aligned}
$$

Covariance:

$$
\operatorname{Cov}(x, y)=E(x y)-E(x) \cdot E(y)
$$

Note that, if x and y are two independent R.v's, then $E(x y)=E(x) \cdot E(y)$, and hence $\operatorname{Cov}(x, y)=0$. Converse is not true.

1) If $E(x)=4$ and $V(x)=9$, then find $E\left(x^{2}\right)$.

Ans: $V(x)=9 \Rightarrow E\left(x^{2}\right)-E^{2}(x)=9$

$$
\begin{aligned}
& \Rightarrow E(\times 2)-16=9 \\
& \Rightarrow E(\times 2)=9+16=25
\end{aligned}
$$

2) If a Rr, x a ssumes two values (-2) and 1 Such that $2 \cdot P(x=-2)=\underbrace{P(x=1)}_{k}$. then find the value of $E(x)$.

x	$P(X=x)$
-2	$P(x=-2)$
1	$P(X=1)$.

$$
\begin{aligned}
& E(x)=\sum_{x} x P(x=x) \\
& =(-2) \cdot P(x=-2)+1 \cdot P(x=1) \\
& =(-2) P(x=-2)+1 \cdot 2 \cdot P(x=-2) \\
& =P(x=-2) \times 0=0
\end{aligned}
$$

3) Consider two independent $R \cdot V^{\prime}$'s x and Y. with $v(x)=6$ and $v(y)=10$. Find $v(x-y)$.

Am:

$$
\begin{aligned}
& \quad V(x \pm y)=\sqrt{2}(x)+\sqrt{ } y) \pm 2 \operatorname{cov}(x, y) . \\
& V(a x \pm b y)=a^{2} \sqrt{ }(x)+b^{2} v(y) \pm 2 a b k \operatorname{r}(x, y) \\
& V(x-y)=V(x)+\sqrt{ }(y)-2 \operatorname{Cov}(x, y)
\end{aligned}
$$

$$
v(x-y)=v(x)+v(y)-2 \underbrace{\operatorname{Cov}(x, y)}_{=0} \text { as } x \& y
$$ are indepentut

$$
=10+6=16 .
$$

4) For two Random Variables x and y, the following informations are given.

$$
\begin{aligned}
& E(x)=8, \quad E(y)=6 . \\
& V(x)=16, \quad V(y)=36, \quad P_{x y}=0.5
\end{aligned}
$$

Find, i) $E(x y)$
iv) $\vee(5 x+2 y)$
ii) $\operatorname{Cov}(x, x+y)$
v) $\operatorname{cov}(x, x-y)$
iii) $V(2 x-5 y)$
vi) $\operatorname{covr}(2 x+3 y, 2 x-3 y)$

Ans.

$$
\begin{aligned}
& \text { - i) } l_{x y}=\frac{\operatorname{Cov}(x, y)}{\sqrt{v(x) \cdot \sqrt{(y)}}} \\
& \Rightarrow 0.5=\frac{E(x y)-E(x) \cdot E(y)}{\sqrt{V(x) \cdot V(y)}} \\
& \Rightarrow 0.5=\frac{E(\times y)-8 \times 6}{4 \times 6} \\
& \Rightarrow \frac{1}{2} \times 4 \times 6=E(x y)-8 \times 6 \\
& \Rightarrow 12=E(x y)-48 \\
& \Rightarrow E(x y)=48+12=60
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
& \operatorname{Cov}(x, x+y) \\
= & v(x)+\operatorname{Cov}(x, y) \\
= & 16+\{E(x y)-E(x) \cdot E(y)\} \\
= & 16+\{60-8 \times 6\} \\
= & 16+12
\end{aligned}
$$

v)

$$
\begin{aligned}
& \operatorname{Cov}(x, x-y) \\
= & \sqrt{(x)}-\operatorname{Cov}(x, y) \\
= & 16-\{E(x y)-E(x) \cdot E(y)\} \\
= & 16-\{60-8 x 6\} \\
= & 16-12
\end{aligned}
$$

$=28$
in) $V(2 x-5 y)$
iv)

$$
=2^{2} r(x)+5^{2} v(y)-2 \times 2 \times 5 \operatorname{cov}(x y)
$$

$$
=(4 \times 16)+(25 \times 36)-(20 \times 12)
$$

$$
=
$$

$$
\begin{aligned}
& v(5 x+2 y) \\
& =5^{-2} v(x)+2^{2} v(y) \\
& \quad+2 \times 5 \times 2 \operatorname{Cov}(x, y) \\
& =(25 \times 16)+(4 \times 36) \\
& +(20 \times 12)
\end{aligned}
$$

$\left.v_{i}\right)$

$$
\begin{aligned}
& =\frac{\operatorname{cov}(2 x+3 y, 2 x-3 y)}{\sqrt{V(2 x+3 y) V(2 x-3 y)}}= \\
& \operatorname{Cov}(2 x+3 y, 2 x-3 y)=4 v(x)-6 \operatorname{cov}(x, y)+6 \operatorname{cov}(x, y)
\end{aligned}
$$

