
Problems on Trigonometry

4<u>1</u> 3.

15 July 2023 09:28

Number of value(s) of x, in
$$[0, 2\pi]$$
 satisfying
 $\cos\left(\frac{\pi}{2}\sin\left(\frac{\pi}{2}\cos x\right)\right) = -\frac{1}{2}$
(A) 0 (B) 1 (C) 2 (D) 4
 $\cos\left(\frac{\pi}{2}\sin\left(\frac{\pi}{2}\cos x\right)\right) = -\frac{1}{2}$
 $\sin\left(\frac{\pi}{2}\cos x\right) = -\frac{1}{2$

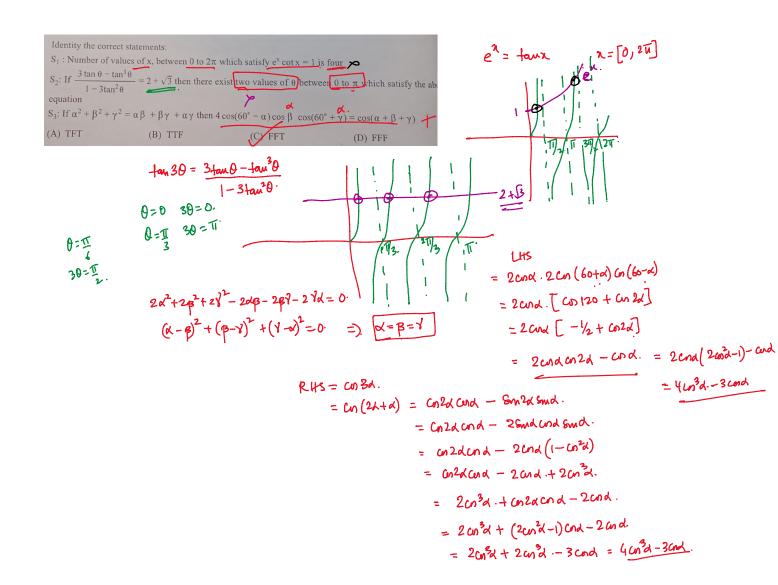
The number of	solutions of the equation
$\cos\left(x+\frac{\pi}{3}\right)\cos\left(x+\frac{\pi}{3}\right)$	$s\left(\frac{\pi}{3}-x\right) = \frac{1}{4}\cos^2 2x, x \in [-3\pi, 3\pi]$
is:	
(A) 8	(B) 5 $16 = 12^{2} + 412 - 22$
(C) 6	16 = K2 + 1K - 2 K2 + 2K - 2h

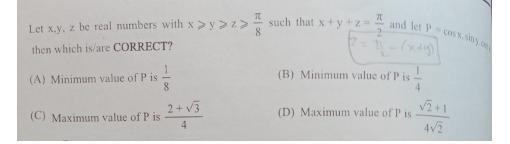
$$2 \cos A \cos B = \cos (A+B) + \cos (A-B)$$

$$2 \cos (\frac{\pi}{3}+\pi) \cos (\frac{\pi}{2}-\pi) = \frac{1}{2} \cos^{2} 2\pi \cdot$$
(a) $\frac{2\pi}{3} + \cos 2\pi = \frac{1}{2} \cos^{2} 2\pi \cdot$
(b) $\frac{2\pi}{3} + \cos 2\pi = \frac{1}{2} \cos^{2} 2\pi \cdot$
(c) $\frac{2\pi}{3} + \cos 2\pi = \frac{1}{2} \cos^{2} 2\pi \cdot$
(c) $\frac{2\pi}{3} + \cos^{2} 2\pi \cdot$
(c) $\frac{2\pi}{$

If α and β be two	real roots of the equation
$(k+1)\tan^2 x - \sqrt{2}(\lambda t)$	$\tan x = (1 - k)$, where $k (\neq -1)$
	pers. If $\tan^2(\alpha + \beta) = 50$, then a
value of λ is:	CostII-m)
(A) 5 _ N	(B) 10 Cos (13-14) Cos (3 Sinn +
(C) 5√2	(D) 10√2

$$(K+1) + eun^{2}n - \sqrt{2} \times \tan x + (K-1) = 0.$$


$$fun + an \beta = \sqrt{2} \times fand + an \beta = \frac{\sqrt{2}}{K+1} \quad fand + an \beta = \frac{K-1}{K+1}$$


$$fan(\alpha + \beta) = \frac{faud + tan \beta}{1 - tand + tan \beta} = \frac{\sqrt{2} \times (K+1)}{1 - \frac{K-1}{(K+1)}}$$

.

.

$$\tan(\alpha + \beta) = \frac{\sqrt{2\lambda}}{2} = \frac{\lambda}{\sqrt{2}},$$
$$\tan^{2}(\alpha + \beta) = \frac{\lambda^{2}}{2} = 50,$$
$$\chi^{2} = 100$$
$$\chi = \pm 10$$

ł	The value of $\frac{(1+\sqrt{3}\tan^{1\circ})(1+\sqrt{3}\tan^{2\circ})(\tan^{1\circ}+\tan^{59\circ})(\tan^{2\circ}+\tan^{58\circ})}{(1+\tan^{2}1^\circ)(1+\tan^{2}2^\circ)}$ is
I	$(1+\sqrt{3}\tan^{10})(1+\sqrt{3}\tan^{20})(1+\sqrt{3})(1+\sqrt{3}\tan^{20})(1+\sqrt{3})$
	The value of $(1 + \tan^2 1^\circ)(1 + \tan^2 2^\circ)$
1	ti

	$1 = 20 = \frac{1}{2} \left(a^{k} + \frac{1}{2} \right)$	then number of natur	al numbers 'k' less u
$TC \cos \theta = \frac{1}{2} \left(a + \frac{1}{2} \right)$	$\left(\frac{1}{a}\right)$ and $\cos 3\theta = \frac{1}{2}\left(a^k + \frac{1}{a^k}\right)$		than 50 is
6. If cost 21	a /		
(given a ∈ R)	0	27	- 4100 00 -

.