Number Theory

Let $a \geq b \geq c > 0$ be real numbers such that for all $n \in \mathbb{N}$, there

exist triangles of side lengths a^n, b^n, c^n . Prove that the triangles are

isosceles.

 $a,b,c \rightarrow real numbers <math>n \rightarrow Natural No.$ tre integer. $a>b>c \rightarrow a$ is the largest eide. $a^n < b^n+c^n$ sum of the 2 smaller sides of $a \le b$ to largest side. $b \le a \quad c \le a$. $b \le a \quad c \le a$.

Prove that

$$a^2 + b^2 = c^2 \text{ and } c - b = 1.$$

 $7^{|CEN|}$ $a^2 = c^2 - b^2 = (c-b)(c+b) = c+b = b+1+b = 2b+1$

(i) a is odd,

 $4k^{2}+4k+r=2b+r$ b=c-1 $b=2k^{2}+2k$ $b^{2}=c^{2}-a^{2}$

 $2b \rightarrow even$. $2b+1 \rightarrow odd$. $a^2 i odd = a \rightarrow odd$

(iii) $a^b + b^a$ is divisible by c.

c > even., odd.

 $c^2 - 2c + 1 = c^2 - \alpha^2$

 $a^{b} + b^{a} = a^{c-1} + (c-1)^{a} = a^{c-1} + c^{a} - a \cdot c^{a-1} + a(a-1) \cdot c^{a-2} - \cdots - 1$ $= (a^{c-1}-1) + [c^{a}-a \cdot c^{a-1} + a(a-1)c^{a-2} + \cdots + (a)c^{a-1}]$

divisible lay C

b is divisible a = 2k+1 divisible lay C by 4 -. let b= 4m. .. a-1 = a4m-1 = (2c-1)2m-1 $= (2c)^{2m} + 2m(2c)^{2m-1} + \dots + {2m \choose 2m-1}(2c) + 1 - 1$ 30+58 <574×10. 86 < 8.7×10. (b) $\sqrt{a^2b^2 + c^2d^2}$ \$a+rs € √p2+r2 $cx + dy = ca(\frac{x}{a}) + db(\frac{y}{b})$ (d) $\sqrt{\frac{a^2b^2+c^2d^2}{c^2+d^2}}$

(c) $\sqrt{\frac{a^2c^2+b^2d^2}{a^2+b^2}}$

catdy < \ (a)2+(db)2 \ (a)2+(4)2 en+dy & \a2c2+13d2

Cauchy-Schwartz.

The value of

 $1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots 2021}$

(a) $\frac{2021}{1010}$

(c) $\frac{2021}{1012}$;

(d) $\frac{2021}{1013}$

1+2=3, 1+2+3=6

 $t_{\Lambda} = \frac{1}{1+2+2+\cdots+1}$

telescopic Enter

unité each term as the difference of 2 tenus

(d) 2021 1013

Define
$$a = p^3 + p^2 + p + 11$$
 and $b = p^2 + 1$, where p is any prime number let $d = \gcd(a, b)$ Then the set of possible values of d is $d = \text{Herf}(a, b)$

(a) $\{1, 2, 5\}$.

(b) $A = p^3 + p^2 + p + 1 + 10$.

(c) $\{1, 5, 10\}$.

(d) $\{1, 2, 10\}$.

(e) $\{1, 2, 10\}$.

(f) $A = \{p^3 + p\} + \{p^2 + p\} + 1 + 10$.

(e) $\{1, 2, 10\}$.

(f) $A = \{p^3 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^3 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^3 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^3 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^3 + p\} + \{p^2 + p\} + 1 + 10$.

(h) $A = \{p^3 + p\} + \{p^2 + p\} + 1 + 10$.

(e) $A = \{p^3 + p\} + \{p^2 + p\} + 1 + 10$.

(f) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^3 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(h) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(e) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(f) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + 1 + 10$.

(g) $A = \{p^2 + p\} + 1 +$

 $n_1 = 4n_2 + 10$. $n_1 = 4n_2 \times 3 + 10$. $n_1 = n_2 \times 3 + 10$.

 $n_1 = 4n_2 + 10$. $n_1 = 4n_2 + 10$. $n_1 = n_2 \times 3 + 10$. $n_1 = n_2 \times 3 + 10$. $n_1 = (2s+1) \cdot 3 + 10$. $n_1 = (2s+1) \cdot 3 + 10$. $n_1 = (2s+1) \cdot 3 + 10$.