Classical Inference [Axiomatic Inference]
vs Bayesian Inference.
Recall: $x_{1}, x_{2}, \ldots, x_{n} \stackrel{i i d}{\sim} f_{\theta}(x) \quad[\theta=$ unknown popln parameter $]$
Classical: Assume that θ is a constant given value (unknown). Estimate/ Infer about this fixed value based on sample obs, using different techniques.
Bayesian. Assume that θ is a random variable.
Begin with assuming that before collecting any sample obs, we have some disth of θ, say $\pi(\theta)$. [Prior distr]

Eg: $x_{1}, x_{2}, \cdots, x_{n} \stackrel{\text { id }}{\sim} N\left(\theta, \sigma^{2}\right)$
$\left[\theta=\right.$ unknown, $\sigma^{2}=$ known $]$.

(i). Begin with a prior distr of θ, say $\theta \sim \pi(\theta)=N\left(\mu, r^{2}\right)$
(μ, τ^{2} are known), $\mu=$ prior belief about the unknown poplin parameter, $\tau^{2}=v a r i a n c e ~ o f ~ p r i o r ~ m e a n ~ i n d i c a t e s ~$ the strength of our belief in μ. Larger $r^{2} \Rightarrow$ less sure are we about μ being the \exp value of θ
Alternatively, $\theta \sim \pi(\theta)=$ Uniform $[a, b]$.
\therefore Choice of Prior distribution is "subjective":
Prior distr $\pi(\theta)$: Prob distr of the unknown popln parameter that captures the initial belief about θ.
Let Ω : Parameter space
\therefore If θ is a discrete $r \cdot v$: condition for $\pi(\theta)$ to be a valid mf will $\sum_{\theta \in \Omega} \pi(\theta)=1$
\therefore If θ is a continuous rev: condition for $\pi(\theta)$ to be a valiel pdf will $\int \pi(\theta)=1$

$$
\theta \in \Omega
$$

(ii) Let $\underset{\sim}{x}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ set of observed sample values.

Once the sample data is collected from the popln, we "update"
our belief about θ. This updated belief is captured the "posterior distr" of θ. Denote as $[\pi(\theta \mid x)\}$

Posterior distr $\pi(\theta \mid \underset{\sim}{x})$ is used in Bayesian inference about θ.

Define: The posterior distr as follows:

Case I: If θ is discrete $r \cdot w$! Case II: If θ is a continuous $M \cdot /$

$$
\pi(\theta \mid \underset{\sim}{x})=\frac{f(\underset{\sim}{x} \mid \theta) \cdot \pi(\theta)}{\sum_{\theta \in \Omega} f(\underset{\sim}{x} \mid \theta) \cdot \pi(\theta)}
$$

$$
\pi(\theta \mid \underset{\sim}{x})=\frac{f(\underset{\sim}{x} \mid \theta) \cdot \pi(\theta)}{\left.\int_{\theta \in \Omega} f(\bar{x} \mid \theta) \cdot \pi(\theta)\right)}
$$

For $\pi(\theta / \underset{\sim}{x})$ to be a valid pmf :

$$
\sum_{\theta \in \Omega} \pi(\theta \mid \underset{\sim}{x})=1
$$

For $\pi(\theta \mid$ z $)$ to be a valid pdf:

$$
\int_{\theta \in \Omega} \pi(\theta \mid \underset{\sim}{x})=1
$$

Check: LHS: $\int_{\theta \in \Omega} \pi(\theta \mid \underset{\sim}{x})$

$$
=\int_{\theta \in \cap} \frac{f(x \mid \theta) \cdot \pi(\theta)}{\sqrt{\left.\int_{\theta \in \Omega} f(x \mid \theta) \cdot \pi(\theta) d \theta\right)}} d \theta
$$

Eg: $x \sim \operatorname{Poi}(\lambda)$

$$
f(x)=e^{-\lambda} \frac{\lambda^{x}}{x!}
$$

$$
\begin{aligned}
& =\int \frac{\left.\iint_{\theta \in \Omega}(x \mid \theta) \cdot \pi(0) d \theta\right)}{} \\
& =\frac{\int f(\underset{\sim}{x} \mid \theta) \cdot \pi(\theta) \cdot d \theta}{\int f(\underset{\sim}{x} \mid \theta) \cdot \pi(\theta) \cdot d \theta}=1 .
\end{aligned}
$$

$\varepsilon_{g}:$

$$
\begin{aligned}
& X \sim N\left(\mu, \sigma^{2}\right) \\
& f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
\end{aligned}
$$

H $\omega \quad \pi(\theta \mid \underset{\sim}{x})=f(\underset{\sim}{x} \mid \theta) \cdot \pi(\theta)$
\therefore To make it a valid $p d f: \quad \pi(\theta \mid \underset{\sim}{x})=(\dot{c}) f(\underset{\sim}{x} \mid \theta) \pi(\theta)$.
To find ' c ', $\int \pi(\theta / \underset{\sim}{x}) d \theta=1$.

