Gmy. Ring fidels

$G \rightarrow$ most narz Ayelme sman

$$
R \rightarrow G+(x)
$$

$F \rightarrow R+($ Regnt of $x)$
Ency fings a giryp voles sodobion Gruy foder n a ling nt all Ning \rightarrow frade

Equivalence Relation Mnixixw
4どo- -

$$
4,1,2,1,4
$$

$$
\begin{aligned}
& f_{12}^{\prime} 1(2(1)!3),(14,123 \\
& P_{4}(2,5)(3,4) \\
& 0
\end{aligned}
$$

Trams
 （a） $2^{2 n}$

Let A and B be any two sets having 11 elements in common，then the number of elements common in $A \times B$ and BXA is

$$
2^{2^{2 n+3}}=2\left(C_{n+1}^{2 n+3}+C_{n+1}^{2 n+3}+\ldots\right)
$$

（a） 11
（c） 10

3．Th Relation defined on the set $A=\{-3,-2,1,2\}$ by $R=\{(x, y):|x-y| \leq 5\}$ is given by $\frac{\left.N^{3}\right\}^{\text {thing }}}{}$ her
（a）$\{(-3,-2),(-3,1),(-3,2),(-2,1)\}$ Containing
（b）$\{(-2,1),(-3,-2),(1,2)\}$ all orders

$$
n_{c_{r}}=n_{c_{n-r}}
$$

$|A \cap B|=11$
（c）$\{(2,2),(1,1),(1,-3),(-2,-3)\}$

$$
2^{2 n+3}=2 \alpha \cdots \alpha
$$

$$
\alpha=2^{2 n+2}
$$

（c）$\{(2,2),(1,1),(1,-3),(-2,-3)\}$
（d）None of these
Choose the correct statement：
$\begin{array}{ll}\text {（a）Every irreflexive relation on a set } \mathrm{A} \text { is Symmetric．} \\ \text {（b）Every } \text {（reflexive relation on a set } \mathrm{A} \text { is always anti } \\ \text {（c）Empty set on any set is always an equivalence relation } \\ \text {（d）Every Asymmetric relation is irreflexive．} \\ \text { If } \mathrm{A} \text { is any non－empty set with the cardinality＂} n \text {＂then the } \\ \text { number of Asymmetric relation is } \\ \text {（a）} 2^{n} \text { ：} \quad \text {（b）} 3^{n} \\ \left.\text {（c）} 3^{n}(n-1)\right) / 2 & \text {（d）} 3^{n-1} \\ \text { Let } A=\{1,2\} \text { ，then Relation } S=\{(1,1),(1,2)\} \text { is }\end{array}$
6．Let $A=\{1,2\}$ ，then Relation $S=\{(1,1),(1,2)\}$ is
（a）Reflexive
（b）Irreflexive
（c）Symmetric $>$
（d）Neither reflexive nor irreflexive
(b) Irreflexive $>$
(c) Symmetric φ
(d) Neither reflexive nor irreflexive
7. A nonempty relation which is reflexive relation cannot be
(a) Symmetric
(b) Asymmetric
(c) Transitive
(d) None of these

If $|\mathrm{A}|=5$, then the number of equivalence relation is
(a) 25
(c) 50

9. The relation "greater than" on the set of natural number is
(a) Only reflexive
(b) Only Symmetric
(c) Only transitive
(d) Equivalence relation
10. For real number x and y, we define a relation $x R y \Leftrightarrow x-y$
$+\sqrt{5}$ is an irrational number. Then the relation R is
(a) Reflexive
(b) Symmetric
(c) Transitive
(d) Equivalence relation
11. Quotient set of an uncountable set cannot be
(a) Finite
(b) Countable
(c) Uncountable
(d) None of these
12. Which of the following is an equivalence relation on the set of integers
(a) $m R n \Leftrightarrow m n \geq 0$
(b) $m R n \Leftrightarrow m n>0$
(c) $m R n \Leftrightarrow|m|=|n|$
(d) $m R n \Leftrightarrow m n \leq 0$
13. Which of the following statement is true?
(a) Intersection of two equivalence relation on a set is again an Equivalence relation.
(b) Inverse of an equivalence relation is not an equivalence relation. $\mathrm{R} \subset(A \times A), R^{-1}=\{(\mathrm{y}, \mathrm{x}):(\mathrm{x}, \mathrm{y}) \in$ R \}
(c) Union of two equivalence relation is again an equivalence relation.
(d) None of these
14. Let Z, be the set of integers. Define $a R b$ if and only if " $a+$ $b^{\prime \prime}$ is a multiple of 5 . Then relation is

(a) Reflexive

(b) Symmetric
(c) Transitive
(d) Not an equivalence relation
5. The number of not onto maps from a set A of 5 elements
15. The number of not onto maps from a set A of 5 elements
to set B of 3 elements
$\begin{array}{ll}\text { (a) } 120 & \text { (b) } 125\end{array}$
(a) 120
(d) 135
16. Let $A=\{2,3,4,5\}$ and Let $R=\{(2,2),(3,3),(4,4),(5,4)\}$ be a relation on A. Then R is
(a) Retrexiye
(b) Symmetric X
(d) None of these

23. Minimum number of transitive relation on a set whose
(a) $\mathrm{Cl}(\mathrm{a}) \mathrm{Cl}(\mathrm{b})=\varnothing$
Cl $\mathrm{\emptyset}$ but $\mathrm{Cl}(\mathrm{a}) \neq \mathrm{Cl}$ (b)
(a) Number of Reflexive relation always
(b) $5 n$
(c) n^{2}
(d) Number of partition of n natural numbers) as
(a) Reflexive
(b) Symmetric
(c) Transitive
(d) None of these

