The Conversion between Cylindrical and Cartesian Coordinates

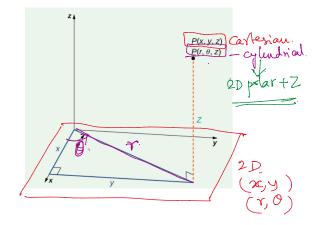
The rectangular coordinates (x,y,z) and the cylindrical coordinates (r,θ,z) of a point are related as follows:

These equations are used to convert from cylindrical coordinates to rectangular coordinates.

- 2D polar form. $\bullet \ \ x = r\cos\theta$ • $y = r \sin \theta$

These equations are used to convert from rectangular coordinates to cylindrical coordinates

3.
$$z = z$$



Definition: spherical coordinate system

In the *spherical coordinate system,* a point P in space (Figure 11.6.9) is represented by the ordered triple (ρ, θ, φ) where

- ρ (the Greek letter rho) is the distance between P and the origin ($\rho \neq 0$);
- θ is the same angle used to describe the location in cylindrical coordinates;
- φ (the Greek letter phi) is the angle formed by the positive z-axis and line segment \overline{OP} , where O is the origin and $0 \le \varphi \le \pi$.

F HOWTO: Converting among Spherical, Cylindrical, and Rectangular Coordinates

Rectangular coordinates (x, y, z), cylindrical coordinates (r, θ, z) , and spherical coordinates (ρ, θ, φ) of a point are related as follows:

Convert from spherical coordinates to rectangular coordinates

These equations are used to convert from spherical coordinates to rectangular coordinates.

- $x = \rho \sin \varphi \cos \theta$
- 2= TUDO
- r= Pour

- $y = \rho \sin \varphi \sin \theta$
- y = rsund

• $z=\rho\cos\varphi$ $\not\equiv = \oint \cos \zeta$ Convert from rectangular coordinates to spherical coordinates

vert from rectangular coordinates to spherical coordinates

P, O, Weeded.

These equations are used to convert from rectangular coordinates to spherical coordinates.

Convert from spherical coordinates to cylindrical coordinates

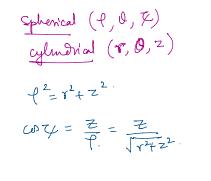
These equations are used to convert from spherical coordinates to cylindrical coordinates.

- $r = \rho \sin \varphi$
- $\theta = \theta$
- $z = \rho \cos \varphi$

Convert from cylindrical coordinates to spherical coordinates

These equations are used to convert from cylindrical coordinates to spherical coordinates.

- $\rho = \sqrt{r^2 + z^2}$
- $\theta = \theta$
- $\varphi = \arccos(\frac{z}{\sqrt{r^2 + z^2}})$



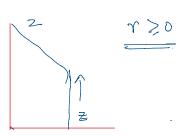
y = Psmtxcoo. cmd = Pantxsmd

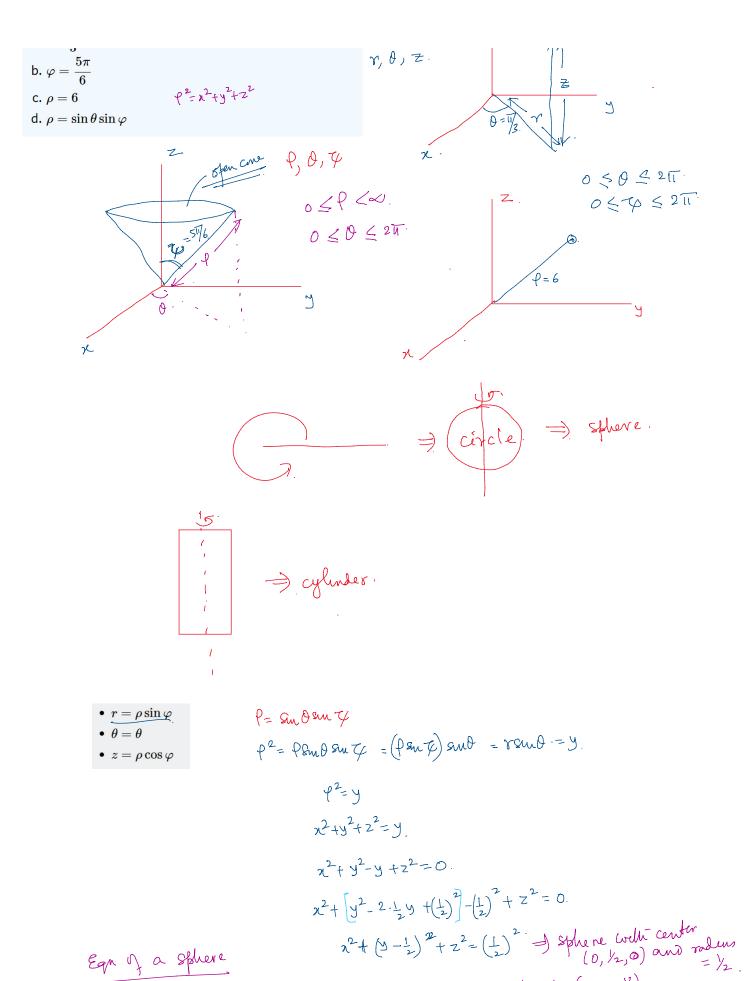
Describe the surfaces with the given spherical equations.

a.
$$\theta = \frac{\pi}{3}$$

b.
$$arphi=rac{5\pi}{6}$$

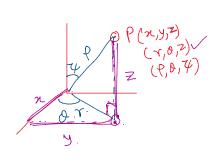
.02 .2 .222





 $(x-\alpha)^2 + (y-\beta)^2 + (z-y)^2 = f^2 \text{ where the center is } (\alpha, \beta, y)$

Convert the rectangular coordinates $(-1, 1, \sqrt{6})$ to both spherical and cylindrical coordinates.



pular coordinates
$$(-1, 1, \sqrt{6})$$
 to both spherical and cylindrical coordinates.

$$x = -1 \quad y = 1 \quad z = \sqrt{6}$$

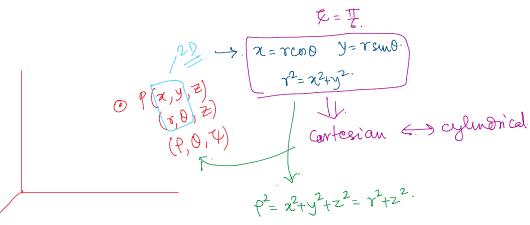
$$(x, 0, 7)$$

$$y = \sqrt{2} + y^2 = \sqrt{2}$$

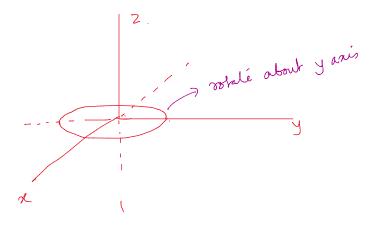
$$\rho^2 = r^2 + z^2 = 8$$

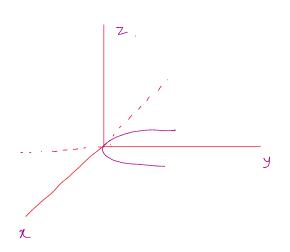
$$\rho^{2} = \tau^{2} + z^{2} = 8$$

$$\rho = 2\sqrt{2}.$$
 $\rho = 2\sqrt{2} = \frac{7}{2} = \frac{7}{2}$



$$\rho^2 = \chi^2 + y^2 + z^2 = \gamma^2 + z^2$$





Nest class Conicoids