13 October 2023 07:33 PM condition for fift.
(i)
$$f(x) \ge 0$$
 for and x .
(i) $f(x) \ge 0$ for and x .
(i) $f(x) \ge 0$ for a normal distribution.

b) point quintum of
arwe, which ps but should
and
$$\pi = \mu \pm 0^{-1}$$

(about 93.737. y vonall
value kein the interval
($\mu - 30^{-2}$, $\mu + 30^{-2}$) which
is called affective range of
discretions
of (π) in case of ND is a pdf;
 $f(\pi) = \frac{1}{6\sqrt{2\pi}} e^{-\frac{1}{262}(\pi - \mu)} - \infty \times \infty$
Here (i) $f(\pi) > 0$ for all value of π .
(ii) $\int_{0}^{\infty} f(\pi) dx$
 $= \int_{0}^{\infty} \frac{1}{6\sqrt{2\pi}} e^{-\frac{1}{282}(\pi - \mu)} dx$
 $f(\pi) = \frac{1}{6\sqrt{2\pi}} e^{-\frac{1}{282}(\pi - \mu)} dx$
 $= \int_{0}^{\infty} \frac{1}{6\sqrt{2\pi}} e^{-\frac{1}{282}} dx$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}t} dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}t} dt$$

$$= \frac{2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}t} dt$$

$$= \frac{2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}t} dt$$

$$= \frac{2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}t} \frac{1}{\sqrt{2\pi}} dt$$

furi da Mean of Normal Distribution: 2) $E(x) = \int_{-\infty}^{\infty} \chi f dx = \int_{-\infty}^{\infty} \chi \frac{1}{5 \sqrt{e^{\pi}}} e^{2\left(\frac{\pi}{5}\right)^{2}} dx$ Let $\mathcal{E}(\pi) = \int_{\mathcal{I}} \int_{-\infty}^{\infty} (\mu + \sigma t) e^{-t/2} dt \mathcal{I}$ $= \frac{H}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{e^{-t^2/2}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{dt + \frac{\delta}{\sqrt{2\pi}}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{t \cdot e^{-t^2/2}}{\sqrt{2\pi}} \frac{dt}{\sqrt{2\pi}}$ $=\frac{2\mu}{2\mu}\left(2^{-t/2}dt\right)$ $\frac{2\mu}{\sqrt{5\pi}}\int_{\infty}^{\infty} \frac{2}{\sqrt{7}} \frac{\sqrt{7}}{\sqrt{7}} \frac{1}{\sqrt{7}} \frac{1}{\sqrt$ 2 <u>µ</u> ×

1211-12 VZ = <u>q</u> M × VTT $\therefore E(x) = \mu (am) \mu$ 3 one order antral moment: $M^{2n} = E(x-M)^{2n}$ $M^{2n} = \int (x-M) f(x) dx$ $M^{2n} = \int (x-M) f(x) dx$