
(ii) favourable want
$$\frac{15}{6}$$
; $x^{15}c_{1}x^{2}$]
= 15 R 15 X 2
= lequired probabilit $\frac{15 \times 15 \times 2}{29}$
(iii) Yequired probability = $\frac{15 \times 15}{20 \times 29}$ = $\frac{15}{50}$
(iii) Yequired probability = $\frac{15 \times 15}{20 \times 29}$ = $\frac{15}{50}$
(iii) Yequired probability = $\frac{15 \times 15}{20 \times 29}$ = $\frac{15}{50}$
(iii) Yequired probability = $\frac{15 \times 15}{200 \times 29}$ = $\frac{15}{50}$
(iii) Yequired probability = $\frac{15 \times 15}{200 \times 29}$ = $\frac{15}{50}$
(iii) Yequired probability = $\frac{15 \times 15}{200 \times 29}$ = $\frac{15}{50}$
(iii) one by one white and 5 black
balls. Shuee balls are dealow at random
Find probability that they are old of same
Colour when (1) the balls are dealow at a
time (1) one by one with suplarment.
(i) $12 c_3 = 220 \rightarrow 100 \times 100$ member of elementary
 $7 c_3 + 5 c_2 = 300 + 100 \times 15 \rightarrow 500$ works to sume colour
 $\therefore Required probability since all may be white out
 $1 - P(all are same colour)$
 $= 1 - \frac{45}{220} = 1 - \frac{9}{79} = \frac{35}{473}$
(1) Total dementary events = $\frac{12}{73} = \frac{7}{1200}$
formulable events $\rightarrow \frac{7}{73} + \frac{7}{73} = 200$$

Required probability is 1- 270 1320

 $\frac{11}{12}$ Required: $1 - \frac{7^3 + 5^3}{(12)^3}$ Protomity $(12)^3$ (íii) 777 + 5 5 5 Sum of points will be even or lus thing. 85 $\begin{array}{l}
 \mathcal{E}^{2} = 36 \quad (\text{To how events}) \quad A_{2} : \begin{array}{c} (F_{1},T) \quad (i,2) \quad H_{1},T \\ (2,i) \quad (2,i) \quad$ Independent went: Independent went: $P(MB) \neq P(M) P(B) = \frac{16}{36} + \frac{6}{36} - \frac{4}{36}$ $= \frac{20}{36} = \frac{579}{36}$ Ĺ P(A) -> spade => 13/52 P(s) -> King => 4/52 P(An B) -> King & spade = (Y 132) $P(A) \times P(B) = 13 \times 4 = \frac{1}{52}$ $F(A) \times P(B) = 52 \times 4 = \frac{1}{52}$ $f(A) \times P(B) = 52 \times 52 = 52$ $f(A) \otimes f(B) = 13 \times 4 = \frac{1}{52}$

27 In a group of 20 males and 5 foundes, 10 males and 5 females are service holders. What is the probability that a person Selected at grandom from the group is a service holder, given that the selected person is a $\sum_{i=1}^{n} \frac{1}{A} \rightarrow armin holder \qquad B \rightarrow mall = 1/5$ P(B) = 20/25 = 1/5P(B) = 7. P(AnB) = 215 $P(B) = 10/25 = <math>\frac{2}{5}$ P(B) = 10/25 = $\frac{2}{5}$ Three boxes of black and white balls At Box I: 5 blank & 3 soluite 7 (1) Prob of selecting At Box I: 6 blank $\frac{2}{9} 2$ white P(1) selecting Az Box I: 3 blank $\frac{2}{9} 5$ white T(1) Given but Az Box II: 3 blank $\frac{2}{9} 5$ white T(1) Given but f(1) Given but f(2) Given but f(1) Given but f(1) Given but f(2) Given but f(1) Given but f(2) Given but f(3) G $P(A_1) = P(A_2) = P(A_3) = \frac{1}{3}$ $P(B/A_3) = 3/8$ P(B/A1)= 5/8 P(B/A2)= 6/8 $(i) P(b) = P(A_1) \cdot P(B/A_1) + P(A_2)P(B/A_2) + P(A_3)P(B/A_3)$ $= \frac{1}{3} \times \frac{5}{8} + \frac{1}{3} \times \frac{5}{8} + \frac{1}{3} \times \frac{5}{8} + \frac{1}{3} \times \frac{3}{8}$ $= \frac{14}{24} = \frac{7}{12} (am).$

