24 February 2024 08:19 $Z^{2} \overline{z} + \overline{z}^{2} \overline{z} = 0$ $Z^{2} \overline{z} = \overline{z}^{2}$ $Z^{2} \overline{z} = \overline{z}^{$

ROOTS OF A COMPLEX NUMBER

$$z^{1/n} = r^{1/n} \left[\cos\left(\frac{2k\pi + \theta}{n}\right) + i\sin\left(\frac{2k\pi + \theta}{n}\right) \right],$$

$$z^{1/n} = r^{1/n} \left[\cos\left(\frac{2k\pi + \theta}{n}\right) + i\sin\left(\frac{2k\pi + \theta}{n}\right) \right],$$

$$\zeta = \frac{1}{2^{n}} = r^{\frac{1}{n}} \frac{1}{2^{n}} \frac{1}{2^{n}} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$\theta = 2n \sqrt{1 + 2}.$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$\theta = 2n \sqrt{1 + 2}.$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$\theta = 2n \sqrt{1 + 2}.$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\sin \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\sin \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\sin \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\sin \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\sin \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

$$R^{1/n} = r^{\frac{1}{n}} \left[\sin \frac{\theta}{n} + i \sin \frac{\theta}{n} \right]$$

Example 1. If z, and z, are distinct complex numbers such that $|z_1|=|z_2|=1$ and $z_1+z_2=1$, then the triangle in the complex plane with z_1, z_2 and -1 as vertices. (a) must be equilateral (b) must be right-angled (c) must be isosceles, but not necessarily equilateral (d) must be obtuse angled $Z_1 = a + b^2 \quad Z_2 = c + d^2 = (\pm 1-a) - b^2 \quad Bc = (-1 - 2z)$ $Z_1 = a + b^2 \quad Z_2 = c + d^2 = (\pm 1-a) - b^2 \quad Bc = (-1 - 2z)$ $Z_1 = a + b^2 \quad Z_2 = c + d^2 = (\pm 1-a) - b^2 \quad Bc = (-1 - 2z)$ $Z_2 + b^2 = (-a)^2 + (A-b)^2$ $Z_3 - z_1 = (c-a)^2 + (A-b)^2$ $Z_3 - z_1 = (c-a)^2 + (A-b)^2$ $Z_1 + z_2 - 2ac + b^2 + d^2 - 2bd = 2 - 2(act+bd)$ $Z_1 + z_2 - 2ac + b^2 + d^2 - 2bd = 2 - 2(act+bd)$ $Z_1 + z_2 - 2ac + b^2 + 2ab^2 = (ac - bd) + (ad + bc)^2$ $Z_1 + z_2 - 2ac - 2bd + 2ab^2 = (ac - bd) + (ad + bc)^2$ $Z_3 - z_1 = (c^2 - d^2 + 2cd) = 2(ac - bd) + (ad + bc)^2$ $Z_1 + z_2 - 2ac - 2bd + 2ab + 2bci$

$(1 + i)^{10} + (1 - i)^{10} =$		() 0	(d) 2
(a) - 1	(b) 1	(c) 0	(u) 2

If $iz^3 + z^2 - z + i = 0$, then find |z|.

If
$$z = \sqrt{2i}$$
, then z is equal to
(a) $\pm \frac{1}{\sqrt{2}}(1+i)$ (b) $\pm \frac{1}{\sqrt{2}}(1-i)$ (c) $\pm (1-i)$ (d) $\pm (1+i)$