22 JUNE PG Thursday, June 22, 2023 7:14 PM PG 22jun 2023 Que... | | 300 | | | 0 | | 1 | 1 | 1 | 1 | Γ1 | 1 | 2 | 3] | | Го | 0 | 0 | 0 | |----|-----|---|---|---|---|---|---|---|---|----|-----|---|----|----|----|-----------|---|---| | | 0 | 2 | 0 | 0 | , | 2 | 0 | 1 | 2 | 3 | 100 | | | 3 | | P. Arrest | | | | 4. | 0 | 0 | 3 | 0 | | | | | 3 | | | | 3 | 4. | 0 | 1 | 0 | 0 | | | 0 | 0 | 0 | 4 | | 0 | 0 | 0 | 1 | | | | 3 | | 1 | | 1 | | | 34. | Let C be an n×n re
of the vector space W
1. 2n | al matrix. Let W be to
7 is
2. atmost n | the vector space span. $3. n^2$ | ned by $\{I, C, C^2,, C^{2n}\}$. The dit A . atmost $2n$ | imension | |-----|--|---|---------------------------------|---|----------| Enry we meeting the proper of the following inference infe | 27 | | | | ull vVv vod vrstnings 167 | C. M (D) \ M (D) | |-----|--|--|---|---|--| | 37. | is a linear transforma
the rank of T is | ger and let $M_n(\mathbb{R})$ denotion such that $T(A)=0$. 2. $\frac{n(n-1)}{2}$ | the space of a whenever $A \in M_n$. 3. n | ull n×n real matrices. If 1
限) is symmetric or skew
4.0 | : M _n (K) -M _n (K) p-symmetric, then | | | | | | | | | 39. | Let V be a 3-di
1-dimensional
1. 13 | mensional vector space
subspaces of V is
2. 26 | over the field $F_3=\mathbb{Z}/3\mathbb{Z}$ 3. 9 | of 3 elements. The number 4. 15 | of distinct | |-----|---|--|--|---------------------------------|-------------| **40.** Let V be the inner product space consisting of linear polynomials, $p:[0,1] \to \mathbb{R}$ (i.e., V consists of polynomials p of the form p(x) = ax + b; a, $b \in \mathbb{R}$), with the inner product defined by $\langle p,q \rangle = \int_{0}^{1} p(x) q(x) dx \text{ for } p,q \in V. \text{ An orthonormal basis of } V \text{ is}$ 1. $\{1,x\}$ 2. $\{1,x\sqrt{3}\}$ 3. $\{1,(2x-1)\sqrt{3}\}$ 4. $\{1,x-\frac{1}{2}\}$ [0 0 0 1] 1 0 0 0 0 1 0 0 . Then the rank of the 4 $imes_4$ 41. Let f(x) be the minimal polynomial of the 4×4 matrix A =0 0 1 0 Every metry Sahrfres on missional follymounts (A) = Zero Mahry >0 lan (f(A)) > 0 New Section 1 Page 12 | 45. | Let V and W be finite-dimensional vector spaces over \mathbb{R} and let $T_i : V \to V$ and $T_2 : W \to W$ be linear transformations whose minimal polynomials are given by $f_i(x) = x^3 + x^2 + x + 1$ and $f_2(x) = x^4 - x^2 - 2$. Let $T: V \oplus W \to V \oplus W$ be the linear transformation defined by $T((v, w)) = (T_i(v), T_2(w))$ for $(v, w) \in V \oplus W$ and let $f(x)$ be the minimal polynomial of T . Then $T: V \oplus W \to V \oplus W$ and let $T: V \to V \oplus W \to V \oplus W$ and let $T: V \to V \oplus W \to V \oplus W$ and let $T: V \to V \oplus W \to V \oplus W$ and let $T: V \to V \oplus W \to V \oplus W$ and let $T: V \to V \oplus W \to V \oplus W$ and let $T: V \to V \oplus W \to V \oplus W$ and let $T: V \to V \oplus W \to V \oplus W$ and let $T: V \to V \oplus W \to V \oplus W$ and let $T: V \to V \oplus W \to V \oplus W$ and let $T: V \to V \oplus W \to V \oplus W$ and let $T: V \to V \to V \oplus W$ and let $T: V \to V \to V \oplus W$ and let $T: V \to V \to V \oplus W$ and let $T: V \to V \to V \to V \oplus W$ and let $T: V \to $ | |-----|---| | | | | 47. Let A = [a_{ij}] be an n × n complex matrix and let A* denote the conjugate transpose of A. Which of following statements are necessarily true? 1. If A is invertible, then tr(A*A) ≠ 0, i.e., the trace of A*A is non zero. 2. If tr(A*A) ≠ 0, then A is invertible. 3. If tr(A*A) < n², then a_{ij} < 1 for some i.j. 4. If tr(A*A) = 0, then A is the zero matrix. | of the | |--|--------| | | | | | | | 48. | Let n be a positive integer and V be an $(n + 1)$ -dimensional vector space over \mathbb{R} . If $\{e_1e_2,e_{n+l}\}$ is a basis of V and T: $V \rightarrow V$ is the linear transformation satisfying $T(e_i) = e_{i+1}$ for $i=1, 2,, n$ and $T(e_{n+1}) = 0$. Then 1. trace of T is non-zero. 2. rank of T is n. 3. nullity of T is 1 4. $T^n = T \circ T \circ \circ T$ (n times) is the zero map. | |-----|--| | | The second point of se | | | | | | | milmus Let A and B be $n \times n$ real matrices such that AB = BA = 0 and A + B is invertible. Which of the following are always true? 1. rank(A) = rank(B)3. pullity(A) + nullity(B) = nA=I B=O AB=BA PLB7=0 p(A)=1 d (mm) = de(A-5) P(ATB) (P(A)+P(B) d (m)70 P(AB) >, P(M) +P(B) ~ () A+B is smoother P(A+B)=1 de (A-B) \$0 07, P(A) +(P(B)-N7) P(A)+P(B) 7,~ ((a)+PLB) un NA9) 20 0(A) 1P(B) 2n P(B)+P(B)=N P(B)+P(B)=N P(B)+N(B)=N P(B)+N(B)=N planth(al=n) (n-N(A))(n-N(B)) = N (n-N(A))(n-N(B)) = N ^{50.} Let n be an integer ≥ 2 and let $M_n(\mathbb{R})$ denote the vector space of $n \times n$ real matrices. Let $B \in M_n(\mathbb{R})$ be an orthogonal matrix and let B' denote the transpose of B. Consider $W_n = \{B' \mid AB : A \in M \mid \mathbb{R}\}\}$. Which of - 50. Let n be an integer ≥ 2 and let $M_n(\mathbb{R})$ denote the vector space of $n \times n$ real matrices. Let $B \in M_n(\mathbb{R})$ be an orthogonal matrix and let B' denote the transpose of B. Consider $W_B = \{B'AB : A \in M_n(\mathbb{R})\}$. Which of the following are necessarily true? - 1. W_B is the subspace of $M_n(\mathbb{R})$ and dim $W_B \leq rank(B)$. - 2. W_B is the subspace of $M_n(\mathbb{R})$ and dim $W_B = rank(B) rank(B')$. - 3. $W_B = M_n(\mathbb{R}).$ - 4. W_B is not a subspace of M_n (\mathbb{R}). 53. Let $A = \begin{bmatrix} 1 & 3 & 5 & a & 13 \\ 0 & 1 & 7 & 9 & b \\ 0 & 0 & 1 & 11 & 15 \end{bmatrix}$, where $a, b \in \mathbb{R}$. Choose the correct statement. - There exist values of a and b for which the columns of A are linearly independent. There exist values of a and b for which Ax=0 has x=0 as the only solution. For all values of a and b, the rows of A span a 3-dimensional subspace of R². There exist values of a and b for which rank (A)=2. | 54. | Consider \mathbb{R}^3 with the standard inner product. Let W be the subspace of \mathbb{R}^3 spanned by $(1,0,-1)$. Which of the following is a basis for the orthogonal complement of W ? 1. $\{(1,0,1),(0,1,0)\}$ 2. $\{(1,2,1),(0,1,1)\}$ 3. $\{(2,1,2),(4,2,4)\}$ 4. $\{(2,-1,2),(1,3,1),(-1,-1,-1)\}$ | |-----|--| | | | | 57. | Let $A \in M_{10}(\mathbb{C})$, the vector space of 10×10 matrices with entries in \mathbb{C} . Let W_A be the subspace of $M_{10}(\mathbb{C})$ spanned by $\{A^n \mid n \geq 0\}$. Choose the correct statements. 1. For any A , $\dim(W_A) \leq 10$ 2. For any A , $\dim(W_A) < 10$ 3. For some A , $10 < \dim(W_A) < 100$ 4. For some A , $\dim(W_A) = 100$ | | |-----|---|--| | | | | | | | | | | | | | 58. | Let A be a complex 3×3 matrix with $A^1 = -1$.
1. A has three distinct eigenvalues
3. A is triangularizable over \mathbb{C} | Which of the following statements are correct? 2. A is diagonalizable over \mathbb{C} 4. A is non-singular | | |-----|---|---|--| | | | | | | | | | | | | | | | | | A Po- | | | | | | | |-----|-------------------------|----------|--|--|---|---|------| | 60. | A tim polym 1. 2. 3. 4. | operator | se all correct option T is uniquely detern Jordan blocks in th ed by T on the quot | ns.
nined by the given
e Jordan decompo
tient space V/Ker(1 | information
sition of T
T-51) is nilpotent, | $x'(x - 5)^2$ and min. where I is the idenultiple of the iden | tity | | | | | | | | | | | 62. For a fixed positive integer n > 3. | the second with the complete the second | | |---|---|---| | identity matrix and J is the n×n matrix NOT true? 1. A*=A for every positive integer k. 3. Rank(A)+Rank(I - A)=n. | et A be the $n \times n$ matrix defined as $A = I - \frac{1}{n}J$, where I is the ix with all entries equal to I . Which of the following statements is 2. Trace $(A)=n-1$ 4. A is invertible. | | | | | 1 | 63. | Let A be a 5×4 matrix with real entries such that $A \underline{x} = \underline{0}$ if and only if $\underline{x} = \underline{0}$, where \underline{x} is a 4×1 vector | |-----|--| | 03. | and $\underline{0}$ is a null vector. Then, the rank of A is 1. 4 2. 5 3. 2 4. 1 | | | | | | | | Let A be an n×n matrix with real entries. Which of the following is correct? If A²=O, then A is diagonalizable over complex numbers. If A²=I, then A is diagonalizable over real numbers If A²=A, then A is diagonalizable only over complex numbers. The only matrix of size n satisfying the characteristic polynomial of A is A. | | | | |---|-----|---|--| | | 66. | If A²=O, then A is diagonalizable over complex numbers. If A²=I, then A is diagonalizable over real numbers If A²=A, then A is diagonalizable only over complex numbers | | | 67. Let A be a 4×4 invertible real matrix. Which of the following is NOT necessarily true? 1. The rows of A form a basis of ℝ'. 2. Null space of A contains only the 0 vector. 3. A has 4 distinct eigenvalues. 4. Image of the linear transformation x → Ax on ℝ' is ℝ'. | |---| | | | 69. For any real square matrix M, let λ⁺(M) be the number of positive eigenvalues of M counting multiplicities. Let A be an n×n real symmetric matrix and Q be an n×n real invertible matrix. Then 1. Rank A=Rank Q^TAQ 2. Rank A=Rank Q^IAQ 3. λ⁺(A) = λ⁺(Q^TAQ) 4. λ⁺(A) = λ⁺(Q⁻¹AQ) | | |--|--| | | | | | to the second of the following and subangers of 1/2 | |-----|--| | 73. | Let y be a non-zero vector in an inner product space V. Then which of the following are subspaces of V? 1. $\{x \in V \mid x, y >= 0\}$. 2. $\{x \in V \mid x, y >= 1\}$. 3. $\{x \in V \mid x, z >= 0 \text{ for all } z \text{ such that } \langle z, y \rangle = 0\}$. 4. $\{x \in V \mid x, z \rangle = 1 \text{ for all } z \text{ such that } \langle z, y \rangle = 1\}$. | 74. | Let A be a 5×5 mat
sum of all the entries
1. 3 | rix with real entries so
in A ³ is
2. 15 | uch that the sum of the | entries in each row of A is 1. Then the 4. 125 | | |-----|--|---|-------------------------|--|--| 77. For the matrix A as given below, which of them satisfy $$A^6=I$$? $$I. \ \ A = \begin{pmatrix} \cos\frac{\pi}{4} & \sin\frac{\pi}{4} & 0\\ -\sin\frac{\pi}{4} & \cos\frac{\pi}{4} & 0\\ 0 & 0 & 1 \end{pmatrix}$$ For the matrix A as given below, which of them satisfy $$A^6 = I$$? 1. $A = \begin{pmatrix} \cos \frac{\pi}{4} & \sin \frac{\pi}{4} & 0 \\ -\sin \frac{\pi}{4} & \cos \frac{\pi}{4} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 2. $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \frac{\pi}{3} & \sin \frac{\pi}{3} \\ 0 & -\sin \frac{\pi}{3} & \cos \frac{\pi}{3} \end{pmatrix}$ 3. $A = \begin{pmatrix} \cos \frac{\pi}{6} & 0 & \sin \frac{\pi}{6} \\ 0 & 1 & 0 \\ -\sin \frac{\pi}{6} & 0 & \cos \frac{\pi}{6} \end{pmatrix}$ 4. $A = \begin{pmatrix} \cos \frac{\pi}{2} & \sin \frac{\pi}{2} & 0 \\ -\sin \frac{\pi}{2} & \cos \frac{\pi}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 3. $$A = \begin{pmatrix} \cos\frac{\pi}{6} & 0 & \sin\frac{\pi}{6} \\ 0 & 1 & 0 \\ -\sin\frac{\pi}{6} & 0 & \cos\frac{\pi}{6} \end{pmatrix}$$ 4. $$A = \begin{bmatrix} \cos\frac{\pi}{2} & \sin\frac{\pi}{2} & 0\\ -\sin\frac{\pi}{2} & \cos\frac{\pi}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$ | 81. | Let A diago | A be a 4×4 matrix over \mathbb{C} such that $rank(A)=2$ and $A^3=A^2\neq 0$. Suppose that A is not onalizable. Then One of the Jordan blocks of the Jordan canonical form of A is $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. $A^2=A\neq 0$. | |-----|-------------|--| | | 3.
4. | There exists a vector v such that $Av \neq 0$ but $A^2v = 0$.
The characteristic polynomial of A is $x^4 - x^3$. | - 1. The linear transformation $T(x, y) = 2\begin{pmatrix} x & -y \\ y & x \end{pmatrix}$ represents the derivative of F at (x, y). - 2. The linear transformation $T(x, y) = 2 \begin{pmatrix} x & y \\ y & x \end{pmatrix}$ represents the derivative of F at (x,y). - 3. The linear transformation T(z)=2z represents the derivative of f at $z \in \mathbb{C}$. - 4. The linear transformation T(z)=2z represents the derivative of f only at 0. | 84. | Consider a homogeneous system of linear equations Ax= Then which of the following statements are always true? 1. Ax=0 has a solution. 2. Ax=0 has no non-zero solution. 3. Ax=0 has a non-zero solution. 4. Dimension of the space of all solutions is at least n-m. | 0, where A is an m | n×n real matrix and n > m. | |-----|--|--------------------|----------------------------| | | | | | | 85. | Let A, B be $n \times n$ matrices such that $BA + B^2 = I - BA^2$, where I is the $n \times n$ identity matrix. Which of the following is always true? 1. A is nonsingular 2. B is nonsingular 3. $A+B$ is nonsingular 4. AB is nonsingular | |-----|---| | | | | | | | 91. | Let A be a real $n \times n$ orthogonal matrix, that is, $A^tA = AA^t = I_n$, the $n \times n$ identity matrix. Which of the following statements are necessarily true? 1. $\langle Ax, Ay \rangle = \langle x, y \rangle \forall x, y \in \mathbb{R}^n$ 2. All eigenvalues of A are either $+1$ or -1 . 3. The rows of A form an orthonormal basis of \mathbb{R}^n . 4. A is diagonalizable over \mathbb{R} . | | |-----|---|--| | | | | | 93. | Let A be a 3×4 and b be a 3×1 matrix with integer entries. Suppose that the system Ax=b has a complex solution. Then 1. Ax=b has an integer solution 2. Ax=b has a rational solution 3. The set of real solutions to Ax=0 has a basis consisting of rational solutions. 4. If b≠0, then A has positive rank. | | |-----|--|--| | | | | | 96. | Let A be 5×5 matrix and let B be obtained by changing one element of A. Let r and s be the ranks of and B respectively. Which of the following statements is/are correct? 1. $s \le r+1$ 2. $r-1 \le s$ 3. $s = r-1$ 4. $s \ne r$ | |-----|--| | | | | | | | | | | | | | 99. | Let A be a 4×7 real matrix and B be a 7×4 real matrix such that $AB=I_4$, where I_4 is the 4×4 identity matrix. Which of the following is/are always true? 1. $\operatorname{rank}(A)=4$ 2. $\operatorname{rank}(B)=7$ 3. $\operatorname{nullity}(B)=0$ 4. $\operatorname{BA}=I_7$, where I_7 is the 7×7 identity matrix | |-----|---| | | |