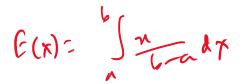
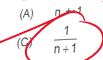
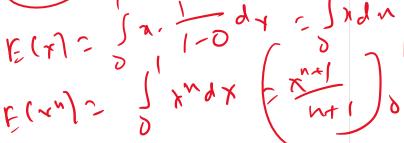
Questions Of Random Variables

Thursday, August 31, 2023 6:42 PM





Questions Of Rando..


9 062395123

1. Let X be a uniform (0,1) random variable. Compute E(Xⁿ)

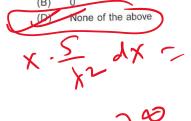
Somlar As where.

2. Compute E(X) if X has a density function given by

$$f(x) = \begin{cases} \frac{1}{4}xe^{-\frac{x}{2}} & x > 0\\ 0 & \text{otherwise} \end{cases}$$

(A)

(B) 2


(C) 3

(D) 4

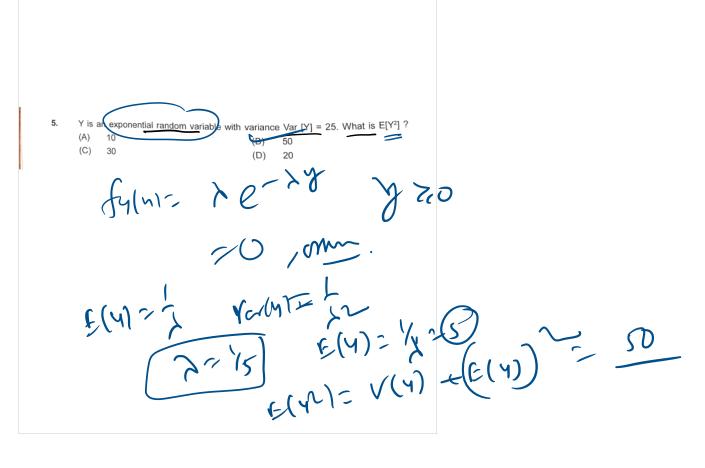
$$f(x) = \begin{cases} \frac{5}{x^2} & x > 5 \\ 0 & x < 5 \end{cases}$$

- (A)
- (C) 5

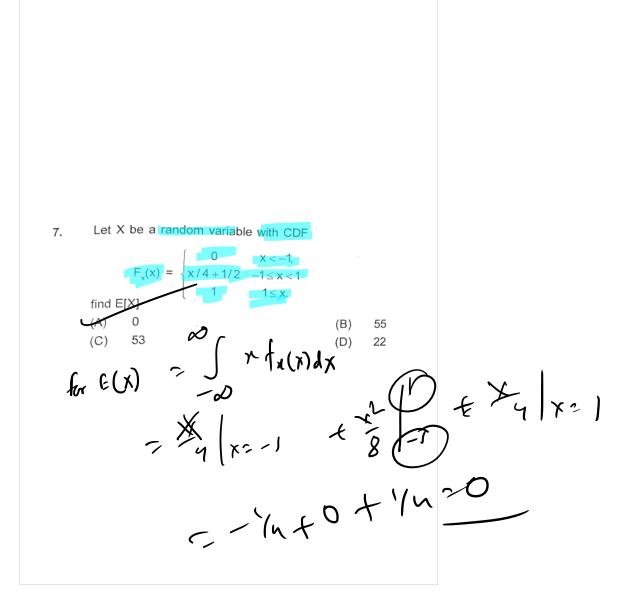
E(x) -

of Jenning

Samula 5/n

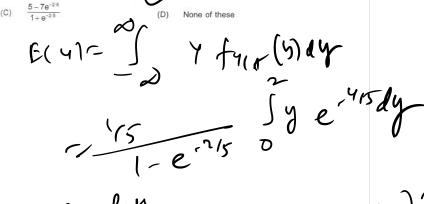

Smil & Problems & Donton

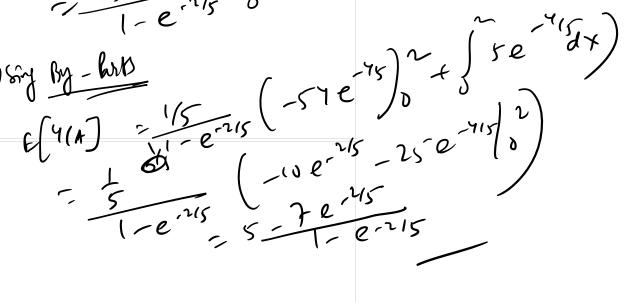
- 4. Let X be a discrete random variable with values x = 0,1,2, and probabilities P(X = 0) = 0.25, P(X = 1) = 0.50, and P(X = 2) = 0.25, respectively. Find E(X).
 - (A)


(B) 0

(C) 4

(D) 8




9112395723 X is an Erlang (η, λ) random variable with parameter $\lambda = 1/3$ and expected value E[X] = 15. What is the value of the parameter η ? None of the above $x (x) = \lambda^n \frac{\partial x}{\partial x} x^{n-1} \cdot e^{-\lambda x}$ $x (x) = \lambda^n \frac{\partial x}{\partial x} x^{n-1} \cdot e^{-\lambda x}$ $x (x) = \lambda^n \frac{\partial x}{\partial x} x^{n-1} \cdot e^{-\lambda x}$ $x (x) = \lambda^n \frac{\partial x}{\partial x} x^{n-1} \cdot e^{-\lambda x}$ $x (x) = \lambda^n \frac{\partial x}{\partial x} x^{n-1} \cdot e^{-\lambda^n x}$ $x (x) = \lambda^n \frac{\partial x}{\partial x} x^{n-1} \cdot e^{-\lambda^n x}$ $x (x) = \lambda^n \frac{\partial x}{\partial x} x^{n-1} \cdot e^{-\lambda^n x}$ $x (x) = \lambda^n \frac{\partial x}{\partial x} x^{n-1} \cdot e^{-\lambda^n x}$ $x (x) = \lambda^n \frac{\partial x}{\partial x} x^{n-1} \cdot e^{-\lambda^n x}$ $x (x) = \lambda^n \frac{\partial x}{\partial x} x^{n-1} \cdot e^{-\lambda^n x}$ $x (x) = \lambda^n \frac{\partial x}{\partial x} x^{n-1} \cdot e^{-\lambda^n x}$ $x (x) = \lambda^n \frac{\partial x}{\partial x} x^{n-1} \cdot e^{-\lambda^n x}$ $x (x) = \lambda^n \frac{\partial x}{\partial x} x^{n-1} \cdot e^{-\lambda^n x}$ $x (x) = \lambda^n \frac{\partial x}{\partial x} x^{n-1} \cdot e^{-\lambda^n x}$ $x (x) = \lambda^n \frac{\partial x}{\partial x} x^{n-1} \cdot e^{-\lambda^n x}$ $x (x) = \lambda^n \frac{\partial x}{\partial x} x^{n-1} \cdot e^{-\lambda^n x}$ $x (x) = \lambda^n \frac{\partial x}{\partial x} x^{n-1} \cdot e^{-\lambda^n x}$ $x (x) = \lambda^n \frac{\partial x}{\partial x} x^{n-1} \cdot e^{-\lambda^n x}$ $x (x) = \lambda^n \frac{\partial x}{\partial x} x^{n-1} \cdot e^{-\lambda^n x}$ $x (x) = \lambda^n \frac{\partial x}{\partial x} x^{n-1} \cdot e^{-\lambda^n x}$ $x (x) = \lambda^n \frac{\partial x}{\partial x} x^{n-1} \cdot e^{-\lambda^n x}$ $x (x) = \lambda^n x^{n-1} \cdot e^{-\lambda^n x}$

Y is an exponential random variable with parameter λ = 0.2. Given the event A = {Y < 2}.

9. Suppose that X is an absolutely continuous random variable with by

$$f(x) = \begin{cases} 2x, & x \in (0,1) \\ 0, & \text{otherwise.} \end{cases}$$
 Find E[X]

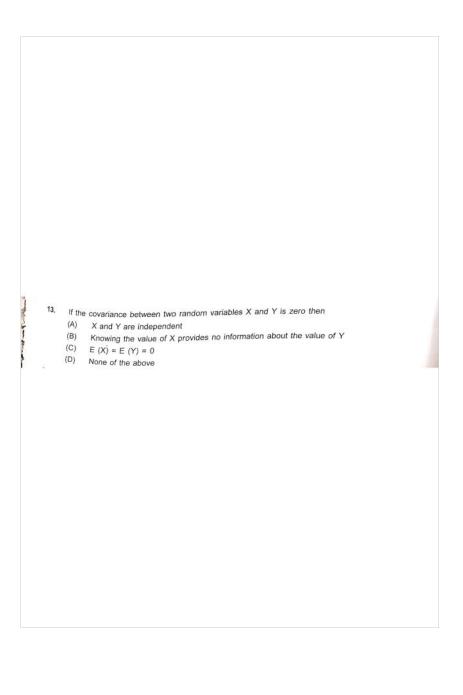
(A) 1/3

(C) 4/3

(B) None of the above

10. Suppose that X is an absolutely continuous random variable with density given by

 $f(x) \,=\, \begin{cases} 1, & x \in (0,1) \\ 0, & \text{otherwise}. \end{cases}$


Find the expectation of ex.

- (A) e + 1
- (C) e 1

- (B) e
- (D) None of the above

11. Find the expected value of the number on a die when thrown. (A) 1.5 (B) 20 (C) 3.5 (D) 6	

12. A random variable X has E(X) = 2 and E variance. (B) 3 (A) 4 (D) 8 (C) 5

$$p(x) = \frac{1}{20} \exp{-\frac{1}{\theta}}$$

(A) $e^{it}(1+\theta^2t^2)^{-1}$ (B) $e^{it}(1-\theta^2t^2)^{-1}$ (C) $e^{-it}(1-\theta^2t^2)^{-1}$ (D) None of these

MILL: $E(e^{-it}) = \sum_{k=0}^{\infty} \frac{1}{2^k} e^{-kt} \int_{0}^{\infty} e^{-kt} e^{-kt} e^{-kt} \int_{0}^{\infty} e^{-kt} e^{-kt} \int_{0}^{\infty} e^{-kt} e^{-kt} e^{-kt} \int_{0}^{\infty} e^{-kt} e^{-kt} e^{-kt} \int_{0}^{\infty} e^{-kt} e^{$

10, for χ∈ (-ω, Φ) χ Φ C O

$$=\frac{1}{20}\int e^{-t} \int e^{-t} \int$$

$$\mu = (r + 1) ! 2$$

- (1 + 2t)-2 (C) (1 - 2t)-2

None of these $-\frac{t^{\gamma}}{t}$ None of these $-\frac{t^{\gamma}}{t}$ $+t^{\gamma}$ $+t^{\gamma}$ $+t^{\gamma}$ $+t^{\gamma}$

(F) Maf $\frac{t^{2}}{t^{2}}$ $\frac{$

- 16. If a dice is thrown at random, what is the expected value of face value ?
 - (A) 1/2

(B) 3/2

(C) 7/2

(D) 5/2

17.	If two dice are thrown, what is the expect (A) 2 (C) 10	ted value of sum of the face values ? (B) 5 (D) 7	

- If X denotes number of failure preceding first success, with a probability of success P, find E(X)
 - (A) P + 1

- (C)

Let X fort forts are follows (XH) on B we show $(I-b)^{X}$ b P > b

- If $f(x) = 30x^4(1 x)$, $0 \le x < 1$ is the p.d.f of a r.v X. Find E(X).
 - (A) 1/7

5/7

(C) 2/7

Berr (n fre)dr

20. If $f(x) = \frac{1}{x^2}$, $1 \le x < \infty$ is the p.d.f of ar.v. X. Find E(X).

(B) 5/2

(A) 2/7 (C) 1/9

(D) Does not exist

21. If X is a r.v. with pdf $f(x) = \frac{x}{6}$ when x = 1, 2, 3 and f(x) = x otherwise. Find $E(x + 2)^{\frac{1}{2}}$.

(A) $\frac{28}{6}$ (C) $\frac{22}{6}$ (D) $\frac{11}{6}$ (E) $\frac{58}{6}$ (D) $\frac{11}{6}$ (E) $\frac{$

22. If X is a r.v. having the politic $\frac{pe^t}{1-qe^t}$ (B) $\frac{pe^t}{1-qe^t}$ (C) $\frac{qe^t}{1+pe^t}$ (D) None of these $e^{tx} + f(x) = \int e^{tx} + f(x) + f($

23. If f(x) = 8. If f(x) = 1/2 $e^{-|x|}$, $-\infty < x < \infty$ is the p.d.f or a r.v X. Find the m.g. f of X.

$$(A) \qquad \frac{1}{1+t^2}$$

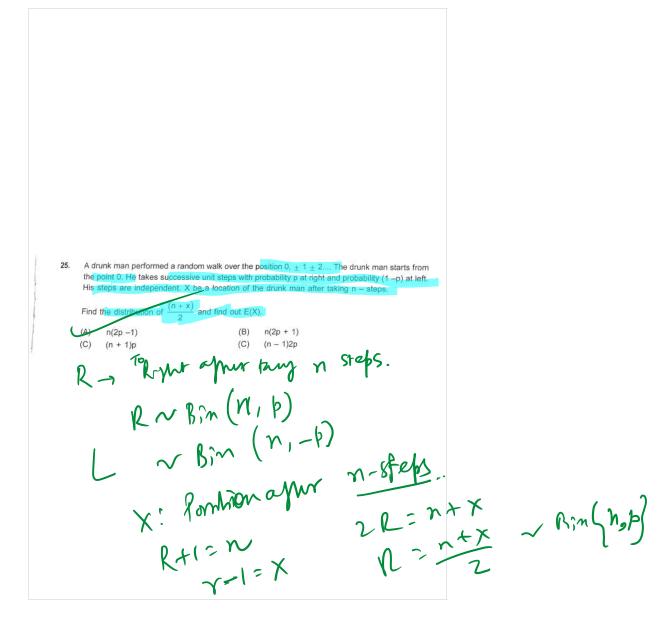
(B)
$$\frac{1}{1-t^2}$$

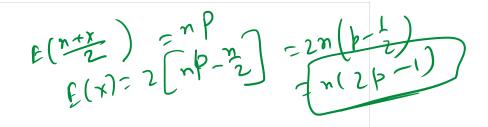
 $(C) \qquad \frac{1}{2t}$

(D) $\frac{t}{2}$

Suludy on alm

(otet(x)dx


subly in its


Setertial of the standar

Market = E(etx) = Setertial of the standar

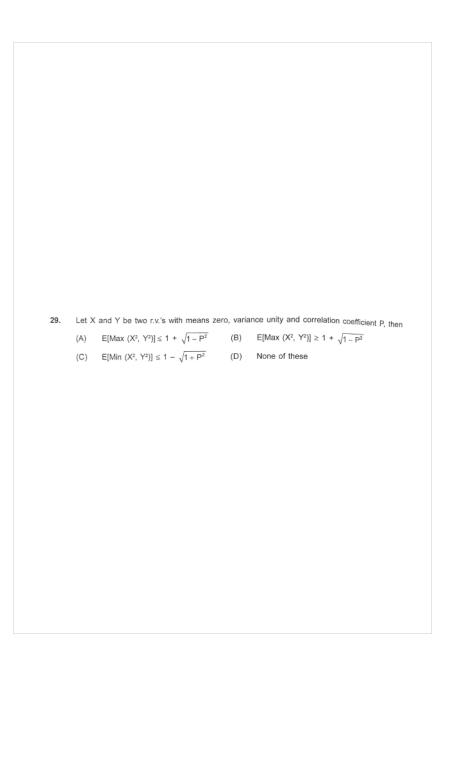
The tix of e-ixidax

- 24. Find the variance of the r.v whose m.g.f is $\frac{e^{-t}}{12}(2+e^t+6e^{2t}+3e^{6t})$
 - (A) $\left(\frac{101}{12}\right) + \left(\frac{25}{12}\right)^2$
- (B) $\left(\frac{101}{12}\right) \left(\frac{25}{12}\right)^3$ (D) $\left(\frac{25}{12}\right) \left(\frac{101}{12}\right)^2$
- $\left(\frac{101}{12}\right) \left(\frac{25}{12}\right)^2$

Jelmyh jerson

ment generating function of glamma distribution about origin M.E.) is
$$\frac{(1+t)^{n},|t|<1}{(1+t)^{n},|t|<1} = \frac{1}{(1-t)^{n},|t|<1}$$

$$\frac{(1+t)^{n},|t|<1}{(1+t)^{n},|t|<1} = \frac{1}{(1-t)^{n},|t|<1}$$


$$\frac{dx}{dx} = \frac{1}{(1-t)^{n}}$$

9062395123

27. Let X and Y are i.i.d. with $P[X = x] = \frac{1}{x} - \frac{1}{x + 1}$

, n(x>t.y>t)

7=mm (x14) P(T=t) = P(x5t, 47t) + P(x5t) P(Y5t) + P(Y5t, X7t) + P(x5t) P(Y5t) = P(x5t) P(Y7t) + P(Y5t) P(X7t) Mm, P (464) -, P(4=1) + P(4=2) + 1---P(4=+) => (1-1/2) --- (1/2-1/3) --- (Enh P (x7+1= ++1 $\begin{array}{c}
P(Y)(+) = y(++1) \\
= (\pm - \pm + 1) \\
= y(++1) \\
=$ A bag contains a coin of value M and a number of other coins whose aggregate value A person draws coins one at a time till the draws the coin of value M. Find the value of his Expectation. (A) $M - \frac{m}{2}$ (C) $M + \frac{m}{2}$

30.	The unit interval (0,1) is divided into two subintervals picking a point at random from inside the Interval. Denoting by Y and Z, the lengths of the larger and the shorter subintervals respectively. (A) $E[Y \mid Z] = 2$ (B) $E[Y \mid Z] = 4$ (C) $E[Y \mid Z] = \infty$ (D) None of these

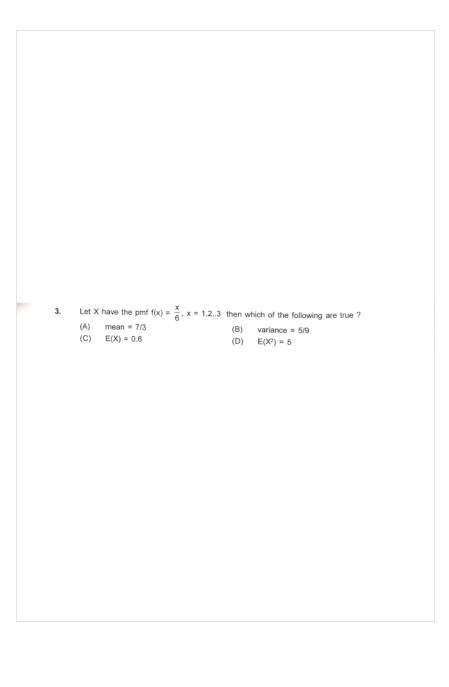
1.	If the moments of a variate V are defined	by E/V	") = 0.6, r = 1,2,3 then which of the following
	holds ?	Dy E(>) = 0.6, r = 1,2,3 then which of the following
	(A) $P(X = 0) = 0.4$	(B)	P(x = 1) = 0.6
	(C) $P(X \ge 2) = 0$.	(D)	P(X = 3) = 0.8

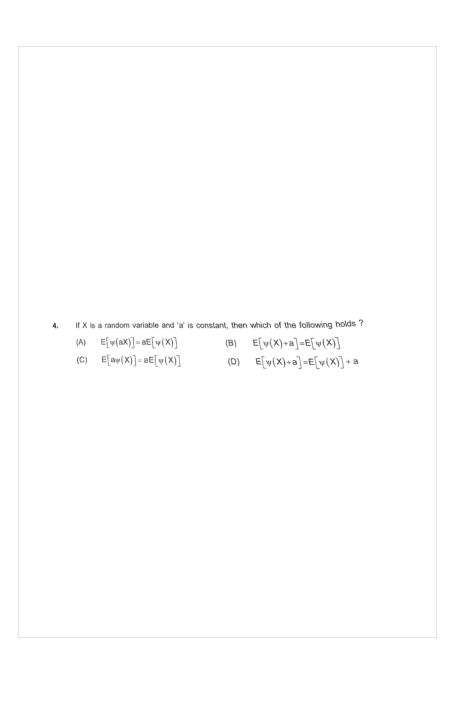
2. Let $F_m(x)$ be the distribution function defined by $F_m(x) = 0$ for $x \le -n$

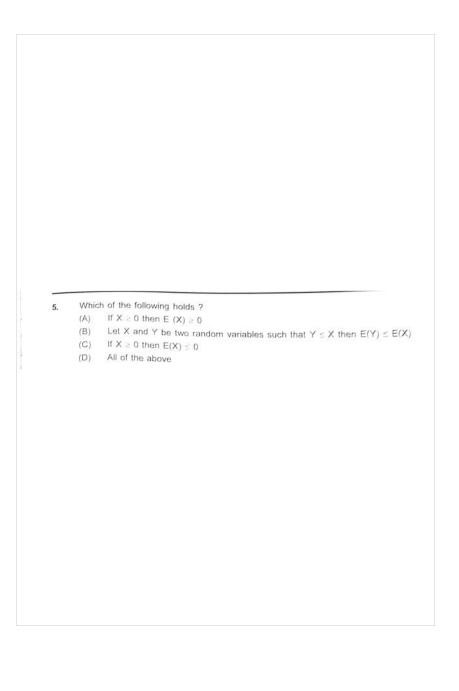
$$= \frac{x+n}{2n} \text{ for } -n < x < n$$

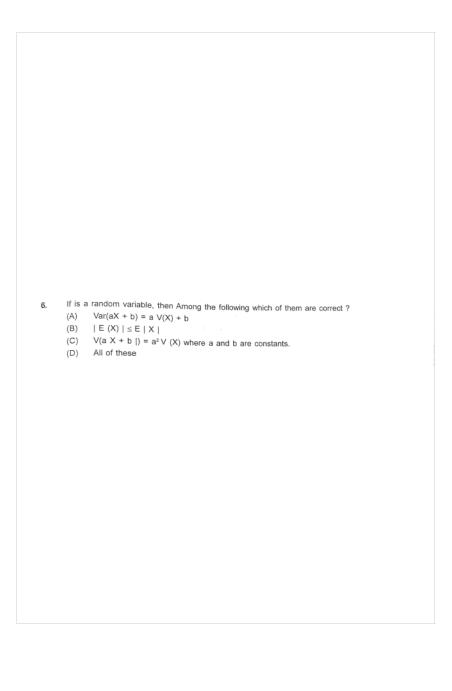
$$= 1 \text{ for } x \ge n$$

then which of the following are true?

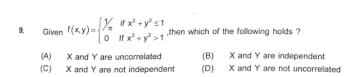

(A) F(x) is not a distribution function

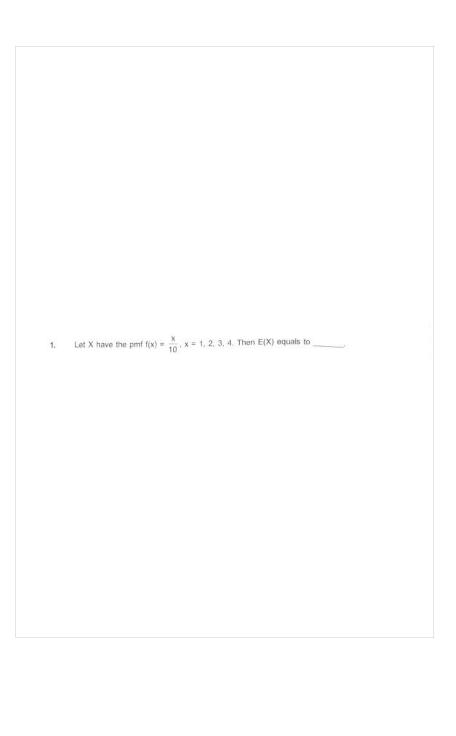

(B) F(x) is distribution function


(C) $\lim_{n\to\infty} F_n(x) = 0.6$ (D) $\lim_{n\to\infty} F_n(x) = \frac{1}{2}$


(C)
$$\lim_{n\to\infty} F_n(x) = 0.6$$

(D)
$$\lim_{n\to\infty} F_n(x) = \frac{1}{2}$$

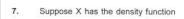



7.	If X & holds: (A) (B) (C)	and Y are two random variables, and if they are independent, then which of the following $P(X)$: $\begin{aligned} &\text{Cov}(X,Y) = 0 \\ &\text{Cov}(X,Y) \neq 0 \\ &\text{E[h (X).k (Y)]} = \text{E[h (X)] E[k(Y)]} \\ &\text{where h (.) is a function of X alone and k (.) is a function of Y alone, provided expectations on both sides exist.} \\ &\text{All of the above} \end{aligned}$	

 8. The random variable x has pdf f(x) = 3/x(2 - x) when 0 ≤ x ≤ 2 and 0 otherwise. Then which o the following are true? (A) Coefficient of skewness β₁ = 0 (B) Coefficient of the kurotsis β₂ = 15/7 (C) Coefficient of skewness β₁ = 1/9 (D) Coefficient of the kurtosis β₂ = 9/7 	(A) Coefficient of skewness $\beta_1 = 0$ (B) Coefficient of the kurotsis $\beta_2 = \frac{15}{7}$ (C) Coefficient of skewness $\beta_1 = 1/9$			
(A) Coefficient of skewness $\beta_1 = 0$ (B) Coefficient of the kurotsis $\beta_2 = \frac{15}{7}$ (C) Coefficient of skewness $\beta_1 = 1/9$	(A) Coefficient of skewness $\beta_1 = 0$ (B) Coefficient of the kurotsis $\beta_2 = \frac{15}{7}$ (C) Coefficient of skewness $\beta_1 = 1/9$			
(A) Coefficient of skewness $\beta_1 = 0$ (B) Coefficient of the kurotsis $\beta_2 = \frac{15}{7}$ (C) Coefficient of skewness $\beta_1 = 1/9$	(A) Coefficient of skewness $\beta_1 = 0$ (B) Coefficient of the kurotsis $\beta_2 = \frac{15}{7}$ (C) Coefficient of skewness $\beta_1 = 1/9$			
(A) Coefficient of skewness $\beta_1 = 0$ (B) Coefficient of the kurotsis $\beta_2 = \frac{15}{7}$ (C) Coefficient of skewness $\beta_1 = 1/9$	(A) Coefficient of skewness $\beta_1 = 0$ (B) Coefficient of the kurotsis $\beta_2 = \frac{15}{7}$ (C) Coefficient of skewness $\beta_1 = 1/9$			
(A) Coefficient of skewness $\beta_1 = 0$ (B) Coefficient of the kurotsis $\beta_2 = \frac{15}{7}$ (C) Coefficient of skewness $\beta_1 = 1/9$	(A) Coefficient of skewness $\beta_1 = 0$ (B) Coefficient of the kurotsis $\beta_2 = \frac{15}{7}$ (C) Coefficient of skewness $\beta_1 = 1/9$			
(A) Coefficient of skewness $\beta_1 = 0$ (B) Coefficient of the kurotsis $\beta_2 = \frac{15}{7}$ (C) Coefficient of skewness $\beta_1 = 1/9$	(A) Coefficient of skewness $\beta_1 = 0$ (B) Coefficient of the kurotsis $\beta_2 = \frac{15}{7}$ (C) Coefficient of skewness $\beta_1 = 1/9$			
(A) Coefficient of skewness $\beta_1 = 0$ (B) Coefficient of the kurotsis $\beta_2 = \frac{15}{7}$ (C) Coefficient of skewness $\beta_1 = 1/9$	(A) Coefficient of skewness $\beta_1 = 0$ (B) Coefficient of the kurotsis $\beta_2 = \frac{15}{7}$ (C) Coefficient of skewness $\beta_1 = 1/9$			
(A) Coefficient of skewness $\beta_1 = 0$ (B) Coefficient of the kurotsis $\beta_2 = \frac{15}{7}$ (C) Coefficient of skewness $\beta_1 = 1/9$	(A) Coefficient of skewness $\beta_1 = 0$ (B) Coefficient of the kurotsis $\beta_2 = \frac{15}{7}$ (C) Coefficient of skewness $\beta_1 = 1/9$			
(A) Coefficient of skewness $\beta_1 = 0$ (B) Coefficient of the kurotsis $\beta_2 = \frac{15}{7}$ (C) Coefficient of skewness $\beta_1 = 1/9$	(A) Coefficient of skewness $\beta_1 = 0$ (B) Coefficient of the kurotsis $\beta_2 = \frac{15}{7}$ (C) Coefficient of skewness $\beta_1 = 1/9$			
(B) Coefficient of the kurotsis $\beta_2 = \frac{15}{7}$ (C) Coefficient of skewness $\beta_1 = 1/9$	(B) Coefficient of the kurotsis $\beta_2 = \frac{15}{7}$ (C) Coefficient of skewness $\beta_1 = 1/9$	8.	the io	ollowing are true?
(C) Coefficient of skewness $\beta_1 = 1/9$	(C) Coefficient of skewness $\beta_1 = 1/9$. ,	
Coefficient of the kurtosis $\beta_2 = 3/7$	(S) Coemicent of the Kurtosis p ₂ = 9//			
			(D)	Coefficient of the kurtosis $\beta_2 = 9/7$

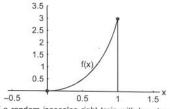
New Section 1 Page 33

10.	least (A)	ss of second ; what percent 70% 73%	graders has a of the class r	mean heig	tween 4 (B)	e feet with 4'10" and 72% 75%	h a standa 5'2"?	deviatio	n of one ii	nch. At


2.	Let X be a random variable $x : -3$ Pr $(X = x) : \frac{1}{6}$ E $(2X + 1)^2 = \underline{\hspace{1cm}}$	6 9	ability distribution :	

3.	The expectation of the number on a die when thrown is equal to

4.	Two unbiased dice are thrown. Then the expected value of the sum of number of points on their is $\underline{\hspace{1cm}}$	n


5.	In four tosses of a coin, let X be the number of heads. Tabulate the 16 possible outcomes with
	the corresponding values of X. the expected value of X equals to

6.	A coin is	ntil a head	appear,	Then the	expectation	n of the nu	mber of tosse	d required is

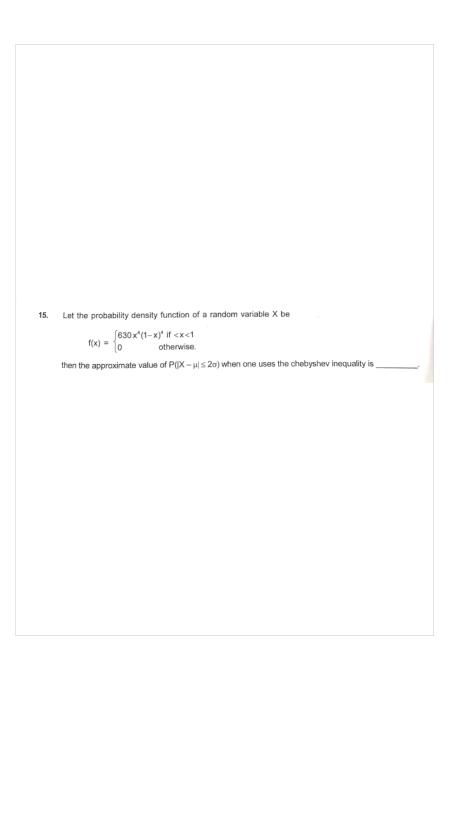
$$f(x) = \begin{cases} 3x^2 & \text{for } 0 < x < 1 \\ 0 & \text{otherwise.} \end{cases}$$

The Graph of the Density Function

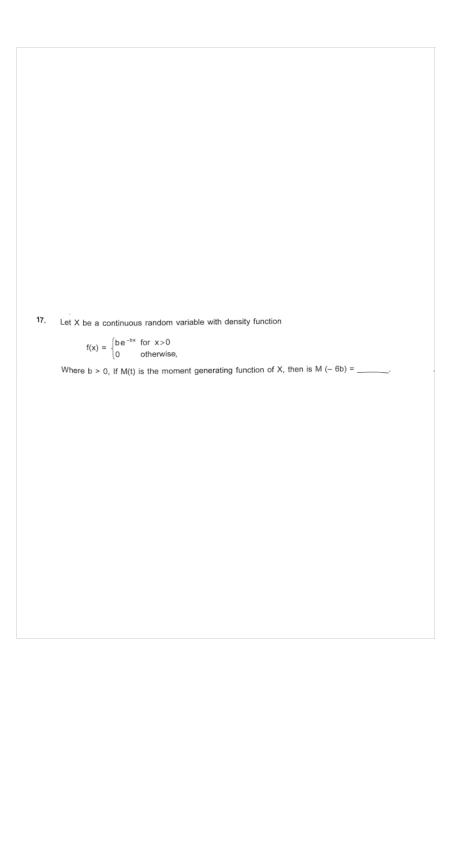
The expected area of a random isosceles right train with hypotenuse X equals to _____

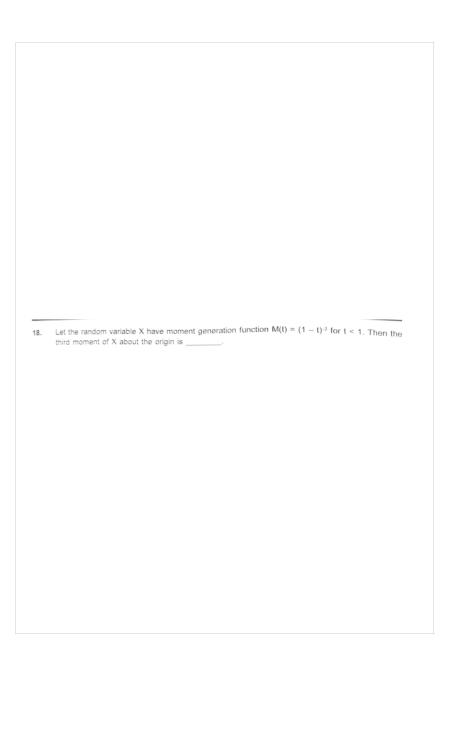
8.	Let variate X have the distribution $P(X=0)=P(X=2)=p;\ P(X=1)=1-2p,\ \text{for}\ 0\le p\le\frac{1}{2}$ The value of p such that the Var (X) a maximum is

9.	Let r.v. X have a density function f(.), cumulative distribution function F(.), mean μ and variance σ^2 . Define Y = α + β X, where α and β are constants satisfying – α < α < α and β > 0.
	The correlation coefficient ρ_{xy} between X and Y equals to


40. An Urn contain balls numbered 4 of 2 miles	9. 9
An urn contain balls numbered 1, 2, 3. First a ball is drawn from the urn and then a fair or tossed the number of times as the number shown on the drawn ball. Then the expected nur	oin is
of heads is	mber

11.	A couple decides to have 3 children, If none of the 3 is a girl, they will try again; and if they still don't get a girl, they will try once more. If the random variable X denote the number of children the couple will have following this scheme, then the expected value of X is


12	A lot of 8 TV sets includes 3 that are defective. If 4 of the sets are chosen at random for shipment
12.	to a hotel, number of expected defective sets is
	to a note, manned of expected defective sets is


13.	Let X have the density function $f(x) = \begin{cases} \frac{2x}{k^2} \\ 0 \end{cases}$ X equal to 2 is	C 0≤x≤k . The value of k such that the variance of otherwise

14.	If the market Ward and the first state of the state of th
14.	If the probability density function of the random variable is
	$f(x) = \begin{cases} 1 - x & \text{for } x < 1 \\ 0 & \text{otherwise,} \end{cases}$
	$f(x) = \begin{cases} 0 & \text{otherwise.} \end{cases}$
	then the variety AM and the
	then the variance of X equals to

16.	What is the moment generation function of the random variable X whose probability density function is given by $f(x) = \begin{cases} e^{-x} & \text{for } x > 0 \\ 0 & \text{otherwise} \end{cases}$ Then the variance of X is

19.	If the moment generating of a random variable X is
10.	
	$M(t) = \sum_{j=0}^{\infty} \frac{e^{(t)-1j}}{j!}$
	$M(t) = \sum_{i} \frac{di}{dt}$
	j=0 J:
	the probability of the event X = 2 equals to
	the probability of the oronic X 2 oqual to

22	Character V has proport appearing function
20.	Given that X has moment generating function
	$M(t) = \frac{1}{6}e^{-2t} + \frac{1}{3}e^{-t} + \frac{1}{4}e^{t} + \frac{1}{4}e^{2t}$
	P(X < 1) =