

$$
\begin{aligned}
& u_{x}=x+\frac{4}{x} \\
& \begin{array}{l}
X \sim \text { r.then } \\
-\infty, \ldots 1,2 \ldots
\end{array} \\
& u_{1}=1+\frac{4}{1}=1+4=5 \\
& u_{2}=2+\frac{4}{2}=4 \\
& \begin{array}{l}
u_{3}=3 \times 4 / 3=4.33 \\
v_{\infty}=\infty
\end{array}
\end{aligned}
$$



$$
\omega_{\infty}=(\infty)
$$




$$
\left\{\begin{array}{r}
\Pi x_{i}=x_{1} \cdot x_{2} \ldots x_{n} \\
\text { GIF } \rightarrow 29 \rightarrow 2 \\
29 \rightarrow 2 \\
2.07 \rightarrow 12
\end{array}\right.
$$


$\forall$ U.Q.

$$
\begin{aligned}
& \frac{n}{n^{2}+1 n^{2} \frac{n}{n^{2}}-(1)}+\frac{1}{n^{2}+2}+\cdots+\frac{n}{n^{2}+n} \cdots+\frac{n}{n_{n}}+\cdots+\frac{n}{n^{2}+n} \\
& a_{n}+\frac{n}{n^{2}+2}+\frac{n}{n^{2}}+\cdots+\frac{n}{n^{2}}=\frac{n^{2}}{n^{2}}=1 \\
& a_{n}>0 \forall n \quad n \in N
\end{aligned}
$$

$B / A+B / B$
I there errins

$Q$


Rienann's Sumetar leg $j=\sum_{m=1}^{N} f\left(\frac{k}{n}\right)^{1}==_{0}^{j} f\left(f \theta_{1} / x\right.$

$$
\begin{aligned}
& =\operatorname{dr}_{n \rightarrow \infty} \frac{1}{n \sqrt{1+\frac{k}{n}}=\operatorname{lr} \sum_{n \rightarrow \infty} \sum_{n=1}^{n} \frac{1}{\sqrt{1+\frac{k}{n}}}=\int_{0}^{1} \frac{d x}{\sqrt{1+x}}} \\
& =\operatorname{dr}_{n \rightarrow \infty} \sum \frac{1}{\sqrt{n^{2}+k n}}=\left.2(1+x)^{\frac{1}{2}}\right|_{0} ^{1}=2(\sqrt{2}-1)
\end{aligned}
$$

$$
\begin{aligned}
& \alpha r \\
& n \rightarrow \infty \frac{a_{n+1}}{a_{n}} \\
& \downarrow \\
& \text { Comat }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ( } \left.|x-2|^{3}\right)_{|x-2|}^{C} 1 \text { <1}-1 \subset x-2 C 1 \\
& 1 C \times C 3
\end{aligned}
$$

Laibnitz' tert $\rightarrow$ @ $x=1$ contr
(0) $x=3 \quad \sum \frac{n}{(2 n+1)^{2}} \otimes u_{n}=\frac{n}{(2 n+1)^{2}}$

$$
\begin{aligned}
& \text { Al } x=3 \text { hom Cons }
\end{aligned}
$$



$$
\begin{aligned}
& E=1 / 2,2 / 3,3 / 4,4 / 5 \cdots \Rightarrow 0.5,0.6 n, 0.75,0.80 \rightarrow \text { Bin) } \\
& \frac{1}{2} \leq x<1 \forall \lambda \in E \rightarrow E \text { Bombed } \\
& \\
& 1 \notin E\left(\because \text { if } 1 \in E \Rightarrow \frac{n}{n+1}=1 \Rightarrow n=n+1\right.
\end{aligned}
$$

But $E$ Contsions inforly many values in the nemhendid of 1 So, $E$ is Not closed.

$$
F=\frac{1}{1-x} ; 0 \leq x<1
$$

As, $0 \leq x<1 \quad \Rightarrow-1<7<x \leq 0$ $0<1-x \leq 1$

$$
1-x \leq 1 \Rightarrow \frac{1}{1-x \geqslant 1}
$$

$F$ is dosed
6. (a) Let $\left\{a_{n}\right\}$ be a sequence of non-negative real numbers such that $\sum_{n=1}^{\infty} a_{n}$ converges, and let $\left\{k_{n}\right\}$ be a strictly increasing sequence of positive integers. Show that $\sum_{n=1}^{\infty} a_{k_{n}}$ also converges.
(b) Suppose $f:[0, I] \rightarrow \mathbb{R}$ is differentiable and $f^{\prime}(x) \leq 1$ at every $x \in(0, I)$. If $f(0)=0$ and $f(1)=1$, show that $f(x)=x$ for all $x \in[0,1]$.
7. Show that the series $\sum_{n=1}^{\infty} \frac{x}{\sqrt{n}\left(1+n^{p} x^{2}\right)}$ converges on $\mathbb{R}$ for $p>1$
8. (a) If $E$ is a subset of $\mathbb{R}$ that does not contain any of its limit points, then prove that $E$ is a countable set.
(b) Let $f:(a, b) \rightarrow \mathbb{R}$ be a continuous function. If $f$ is uniformly continuous, then prove that there exists a continuous function $g:[a, b] \rightarrow \mathbb{R}$, such that $g(x)=f(x)$ for all $x \in(a, b)$.

$$
2062395123
$$

$\curvearrowleft \curvearrowleft \curvearrowleft \curvearrowleft$
Comps

$$
\begin{aligned}
& y_{n}=\frac{x_{n}+\cdots x_{n}}{n} \\
& x_{n}=-x_{n-1} \forall n \in N \quad n \text { isbn } \\
& y_{n}=0 \forall\left[\operatorname{ven} n \frac{1}{n} \sqrt{\frac{4 \times 1}{2}} \Rightarrow \ln _{n \rightarrow \infty} y_{n}=0\right. \\
& \text { If } n \text { is odd } y_{n}=\frac{1}{n} \sqrt{\frac{u+1}{2}} \Rightarrow w_{n \rightarrow \infty} r y_{n}=0
\end{aligned}
$$

(a) monotonic
(c) bounded but not convergent


11. If the power series $\sum_{n}^{\infty} a_{n} x^{n}$ converges for $x=3$, then the series $\sum_{n=0}^{\infty} a_{n} x^{n}$,
$\begin{array}{ll}\text { (a) Converges absolutely for } x=-2 & \text { (b) Converges but not absolutely for } x=-1 \\ \text { (c) Converges but not absolutely for } x=1 & \text { (d) Diverges for } x=-2\end{array}$
Rations of lam $R \geqslant 3, R \geqslant 3$
The series Converges absoluily inside me regin of Compere. Seem comes abisaluy for $x=-1,-2,1$

$$
\left|\frac{x}{\mid x+m}\right|
$$

(a) $(-1,1)$
(b) $(-1,1]$
(c) $[0,1]$

13. (a) Examine whether the following series is convergent $\sum_{n=1}^{\infty} \frac{n!}{1 \cdot 3 \cdot 5 \ldots(2 n-1)}$
(b) For each $x \in \mathbb{R}$, let $[x]$ denotes the integer less than or equal to $x$. Further, for a fixed $\beta \in(0,1)$, define $a_{n}=\frac{1}{n}[n \beta]+n^{2} \beta^{n}$ for all $n \in \mathbb{N}$. Show that the sequence $\left\{a_{0}\right\}$ converges to $\beta$.
14. (a) Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$, defined by $f(x)=x^{2}$ for $x \in \mathbb{R}$, is not uniformly contimuous.
(b) For each $n \in \mathbb{N}$, let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be a uniformly continuous function. If the sequence $\left(f_{n}\right)$ converges uniformly on $\mathbb{R}$ to a function $f: \mathbb{R} \rightarrow \mathbb{R}$, then show that $f$ is uniformly continuous.
15. (a) Let $A$ be a nonempty bounded subset of $\mathbb{R}$. Show that $\{x \in \mathbb{R} \mid x \geq a$ for all $a \in A\}$ is a closed subset of $\mathbb{R}$.
(b) Let $\left\{x_{n}\right\}$ be a sequence in $\mathbb{R}$ such that $\left|x_{n+1}-x_{n}\right|<\frac{1}{n^{2}}$ for all $n \in \mathbb{N}$. Show that the sequence $\left\{x_{n}\right\}$ is convergent.

17. Let [ $x]$ denote the greatest integer function of $x$. The value of $\alpha$ for which the function
$f(x)=\left\{\begin{array}{cl}\frac{\sin \left[-x^{2}\right]}{\left[-x^{2}\right]}, & x \neq 0 \\ \alpha, & x=0\end{array}\right.$ is contimuous at $x=0$ is (MCQ
(a) 0
(b) $\sin (-1)$
(c) $\sin I$
(d) $I$
18. Let the function $f(x)$ be defined by $f(x)=\left\{\begin{array}{cc}e^{x}, & x \text { is rational } \\ e^{1-x}, & x \text { is irrational }\end{array}\right.$ for $x$ in $(0,1)$. Then $\quad$ (MCQ) (a) $f$ is contimuous at every point in $(0,1)$. (b) $f$ is discontimuous at every point in $(0, l)$. (c) $f$ is discontinuous only at one point in $(0,1)$. (d) $f$ is continuous only at one point in $(0, l)$.

$$
\begin{aligned}
& \text { 19. Let } x_{n}=\left(1-\frac{1}{3}\right)^{2}\left(1-\frac{1}{6}\right)^{2}\left(1-\frac{1}{10}\right)^{2} \cdots\left(1-\frac{1}{\frac{n(n+1)}{2}}\right)^{2}, n \geq 2 \text {. Then } \lim _{n \rightarrow-\infty} x_{n} \text { is } \\
& \begin{array}{llll}
\text { (a) } \frac{1}{3} & \text { (b) } \frac{1}{9} & \text { (c) } \frac{1}{81} & \text { (d) } 0
\end{array}
\end{aligned}
$$

20. The function to which the power series $\sum_{n=1}^{\infty}(-1)^{n+1} n x^{2 n-2}$ converges is _(NAT)
21. Let $0<a \leq 1, s_{1}=\frac{a}{2}$ and for $n \in \mathbb{N}$, let $s_{n+1}=\frac{1}{2}\left(s_{n}^{2}+a\right)$. Show that the sequence $\left\{s_{w}\right\}$ is convergent and find its limit.
22. Let $K$ be a compact subset of $\mathbb{R}$ with non-empty interior. Prove that, $K$ is of the form $[a, b]$ or of the form $[a, b] \mid \cup I_{n^{\prime}}$ where $\left\{I_{n}\right\}$ is a countable disjoint family of open intervals with end points in $K$.
23. The coefficient of $(x-1)^{2}$ in the Taylor series expansion of $f(x)=x e^{x}(x \in \mathbb{R})$ about the point $x=1$ is
(a) $\frac{e}{2}$
(b) $2 e$
(c) $\frac{3 e}{2}$
(d) $3 e$

24. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous fiunction satisfying $x+\int_{0}^{x} f(t) d t=e^{*}-1$ for all $x \in \mathbb{R}$. Then the set
$\begin{array}{llll}\text { (a) }[\log 2, \log 3] & \text { (b) }[2 \log 2,3 \log 3] & \text { (c) }\left[e-1, e^{2}-1\right] & \text { (d) }\left[0, e^{2}\right]\end{array}$
(MCQ)
$\therefore \quad$ Let $x_{n}=2^{2 n}\left(1-\cos \left(\frac{1}{2^{n}}\right)\right)$ for all $n \in \mathbb{N}$. Then, the sequence $\left\{x_{n}\right\}$
25. Let $\left\{x_{n}\right\}$ be a sequence of real numbers such that $\lim _{n \rightarrow \infty}\left(x_{n+1}-x_{n}\right)=c$, where $c$ is a positive real number. Then, the sequence $\left\{\frac{x_{n}}{n}\right\} \quad$ (MCQ)
(a) is NOT bounded (b) is bounded but NOT convergent (c) converges to $c$ (d) converges to 0
26. Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\bar{n}} b_{n}$ be two series, where $a_{n}=\frac{(-1)^{*} n}{2^{n}}, b_{n}=\frac{(-1)^{n}}{\log (n+1)}$ for all $n \in \mathbb{N}$. Then (MCQ) (a) both $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are absolutely convergent.
(b) $\sum_{n=1}^{\bar{n}} a_{n}$ is absolutely convergent but $\sum_{n=1}^{m} b_{n}$ is conditionally convergent.
(c) $\sum_{n=1}^{\infty} a_{n}$ is conditionally convergent but $\sum_{n=1}^{\infty} b_{n}$ is absolutely convergent.
(d) both $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are conditionally convergent
27. The set $\left\{\frac{x^{2}}{1+x^{2}}: x \in \mathbb{R}\right\}$ is (MCQ)
(a) connected but NOT compact in $\mathbb{R} \quad$ (b) compact but NOT connected in $\mathbb{R}$ (c) compact and connected in $\mathbb{R}$
(d) neither compact nor connected in $\mathbb{R}$
28. The set of all limit points of the set $\left\{\frac{2}{x+1}: x \in(-1,1)\right\}$ in $\mathbb{R}$ is $\quad$ (MCQ)
(a) $[1, \infty)$
(b) $(1, \infty)$
(c) $[-1,1]$
(d) $[-1, \infty)$

29. Let $f(x)-x^{3}+x$ and $g(x)-x^{4}-x$ for all $x \in \mathbb{R}$. If $f^{-1}$ denotes the inverse function of $f$, then the derivative of the composite function $g \circ f^{\prime \prime}$ at the point 2 is (MCQ)
(a) $\frac{2}{13}$
(b) $\frac{1}{2}$
(c) $\frac{11}{13}$
(d) $\frac{11}{4}$
30. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a differentiable function such that $f^{\prime}\left(x^{2}\right)=1-x^{3}$ for all $x>0$ and $f(l)=0$.
Then, $f(4)$
(a) $\frac{-47}{5}$
(b) $\frac{-47}{10}$
(c) $\frac{-16}{5}$
(d) $\frac{-8}{5}$
31. Let $S-\left\{x \in \mathbb{R}: x^{6}-x^{2} \leq 100 ;\right.$ and $T=\left\{x^{2}-2 x: x \in(0, \infty)\right\}$. The set $S \cap T$ is
(MCQ) $\begin{array}{ll}\text { (a) clased and bounded in } \mathbb{R} & \text { (b) closed but NOT bounded in } \mathbb{R} \\ \text { (c) bounded but NOT closed in } \mathbb{R} & \text { (d) neither closed nor bounded in } \mathbb{R}\end{array}$
(c) boundeed but NOT closed in $\mathbb{R}$ (d) neither closed nor bounded in $\mathbb{R}$
32. Let $f:(0,1) \rightarrow \mathbb{R}$ be a differentiable function such that $\left|f^{\prime}(x)\right| \leq 5$, for all $x \in(0, I)$. Show that the sequence $\left\{f\left(\frac{1}{n+1}\right)\right\}$ converges in $\mathbb{R}$.
33. Let $S$ be a nonempty subset of $\mathbb{R}$. If $S$ is a finite union of disjoint bounded intervals, then which one of the following is true?
(a) If $S$ is not compact, then sup $S \notin S$ and inf $S \notin S$
(b) Even if sup $S \in S$ and inf $S \in S, S$ need not be compact
(c) If sup $S \in$ S and inf $S \in S$, then $S$ is compact
(d) Even if $S$ is compact, it is not necessary that sup $S \in S$ and inf $S \in S$
34. Let $\left\{x_{n}\right\}$ be a convergent sequence of real numbers. If $x_{1}>\pi+\sqrt{2}$ and $x_{n+1}=\pi+\sqrt{x_{n}-\pi}$ for $n \geq 1$, then which one of the following is the limit of this sequence? (MCQ) (a) $\pi+1$ $\begin{array}{ll}\text { (b) } \pi+\sqrt{2} & \text { (c) } \pi\end{array}$
(d) $\pi+\sqrt{\pi}$
35. Let $f^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function with flo) $=0$. If for all $x \in \mathbb{R}, 1<f \cdot(x)<2$, then which one of the following statements is true on ( $0, \infty$ )? one of the following statements is true on ( $0, \infty$ )? $f$ is increasing and bounded
$\begin{array}{ll}\text { (a) } f \text { is unbounded }\end{array}$ (c) f has at least one zero (b) is increasin
36. Let A be a nonempty subset of $\mathbb{R}$. Let I (A) denote the set of interior points of $A$. Then I(A) can be
(a) cmpty (b) singleton
(c) a finite set containing more than one element (d) countable but not finite
37. The limit $\lim _{x \rightarrow 0^{+}} \frac{1}{\sin ^{2} x} \int_{\frac{1}{2}}^{x} \sin ^{-1} t d t$ is equal to
(a) 0
(b) $\frac{1}{8}$
(c) $\frac{1}{4}$
(d) $\frac{3}{8}$
38. Let $S=\bigcap_{n=1}^{-}\left(\left[0, \frac{1}{2 n+1}\right] \bigcup\left[\frac{1}{2 n}, 1\right]\right)$. Which one of the following statements is FALSE? (MCQ)
(a) There exist sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ in $[0,1]$ such that $S=[0,1] \backslash \bigcup_{n=1}\left(a_{n}, b_{n}\right)$
(b) $[0,1] \backslash \mathrm{S}$ is an open set
(c) If A is an infinite subset of S, then $A$ has a limit point
(d) There exists an infinite subset of $S$ having no limit points
39. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a strictly increasing continuous function. If $\left\{a_{n}\right\}$ is a sequence in $[0,1]$, then the sequence $\left(f\left(a_{j}\right)\right.$ ) is (MCQ)
(a) increasing
(b) bounded
(c) convergent
(d) not necessarily bounded
40. Which one of the following statements is true for the series $\sum_{n=1}^{-}(-1)^{n} \frac{(2 n)!}{n^{2 n}}$ ? (MCQ)
(a) The series converges conditionally but not absolutely
(b) The series converges absolutely
(c) The sequence of partial sums of the series is bounded but not convergent
(d) The sequence of partial sums of the series is unbounded
41. The sequence $\left\{\cos \left(\frac{1}{2} \tan ^{-1}\left(-\frac{n}{2}\right)^{n}\right)\right\}$ is (a) monotone and convergent (c) convergent but not monotone
(MCQ)
(b) monotone but not convergent (d) neither monotone nor convergent
42. Let $G$ and $H$ be nonempty subsets of $\mathbb{R}$, where $G$ is connected and $G \cup H$ is not connected. Which one of the following statements is true for all such G and H ?

43. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a fuenction defined by $f(x)=\int,(t-1)^{\prime}$ dt. In which of the follewing: interval(s), $f$ $\begin{array}{llll}\text { takes the value } 1 & \text { (b) }[-2,4] & \text { (c) }[2,8] & \text { (d) }[6,12]\end{array}$
44. Which of the following condition(s) implies (imply) the convergence of a sequence \{ $\left.x_{n}\right\}$ of real numbers
(a) Given $\varepsilon>0$, there exists an $n_{o} \in \mathbb{N}$ such that for all $n \geq n_{0},\left|x_{n+1}-x_{n}\right|<\varepsilon$
(b) Given $\varepsilon>0$, there exists an $n_{o} \in \mathbb{N}$ such that for all $n \geq n_{0}, \frac{1}{(n+1)^{2}}\left|x_{n+1}-x_{n}\right|<\varepsilon$
(c) Given $\varepsilon>0$, there exists an $n_{o} \in \mathbb{N}$ such that for all $n \geq n_{0} .(n+1)^{2}\left|x_{n+1}-x_{\alpha}\right|<\varepsilon$
(d) Given $\varepsilon>0$, there exists an $n_{0} \in \mathbb{N}$ such that for all $m$, $n$ with $m>n \geq n_{0},\left|x_{m}-x_{n}\right|<\varepsilon$
45. Which of the following statements is (are) true on the interval $\left(0, \frac{\pi}{2}\right)$ ?
(MSO)
$\begin{array}{ll}\text { (a) } \cos x<\cos (\sin x) & \text { (b) } \tan x<x \\ \text { (c) } \sqrt{1+x}<1+\frac{x}{2}-\frac{x^{2}}{8} & \text { (d) } \frac{1-x^{2}}{2}<\ln (2+x)\end{array}$
46. Let $f, g:[0, I] \rightarrow[0,1]$ be functions. Let $R(f)$ and $R(g)$ be the ranges of $f$ and $g$, respectively. Which of the following statements is (are) true?
(a) If $f(x) \leq g(x)$ for all $x \in[0,1]$, then $\sup R(f) \leq \inf R(g)$
(b) If $f(x) \leq g(x)$ for some $x \in[0,1]$, then inf $R(f) \leq \sup R(g)$
(c) If $f(x) \leq g(y)$ for some $x, y \in[0,1]$, then inf $R(f) \leq \sup R(g)$
(d) If $f(x) \leq g(y)$ for all $x, y \in[0,1]$, then sup $R(f) \leq \inf R(g)$
47. If the power series $\sum_{n=0}^{\infty} \frac{n!}{n^{n}} x^{2 n}$ converges for $|x|<c$ and diverges for $|x|>c$, then the value of $c$, correct upto three decimal places, is (NAT)
48. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)= \begin{cases}x^{6}-1, & x \in \mathbb{Q} \\ 1-x^{6}, & x \notin \mathbb{Q}\end{cases}$ The number of points at which fis continuous, is
49. Let $f:(0, I) \rightarrow \mathbb{R}$ be a continuously differentiable function such that $f^{\prime}$ has finitely many zeros in $(0,1)$ and $f^{\prime}$ changes sign at exactly two of these points. Then for any $y \in \mathbb{R}$, the maximum mumber of solutions to $f(x)=y$ in $(0, l)$ is
50. The coefficient of $\left(x-\frac{\pi}{4}\right)^{3}$ in the Taylor series expansion of the function $f(x)=3 \sin x \cos \left(x+\frac{\pi}{4}\right)$, $x \in \mathbb{R}$ about the point $\frac{\pi}{4}$, correct upto three decimal places, is $\quad$ (NAT)
51. If $\int_{0}^{x}\left(e^{-r^{2}}+\cos t\right) d t$ has the power series expansion $\sum_{n=1}^{\infty} a_{n} x^{n}$, then $a_{5}$, correct upto three decimal places, is equal to
(NAT)
52. The limit $\lim _{x \rightarrow 0^{+}} \frac{9}{x}\left(\frac{1}{\tan ^{-1} x}-\frac{1}{x}\right)$ is equal to (NAT)
53. The sequence $\left\{s_{n}\right\}$ of real numbers given by $s_{n}=\frac{\sin \frac{\pi}{2}}{1.2}+\frac{\sin \frac{\pi}{2^{2}}}{2.3}+\ldots+\frac{\sin \frac{\pi}{2^{n}}}{n \cdot(n+1)}$ is (MCO)
$\begin{array}{ll}\text { (a) a divergent sequence } & \text { (b) an oscillatory sequence }\end{array}$ (c) not a Cauchy sequence (d) a Cauchy sequence
54. Let $f:[-1,1] \rightarrow \mathbb{R}$ be a continuous function. Then the integral $\int_{0}^{\pi} x f(\sin x) d x$ is equivalent to (MCQ)
(a) $\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) d x$
(b) $\frac{\pi}{2} \int_{0}^{\pi} f(\cos x) d x$
(c) $\pi \int_{0}^{\pi} f(\cos x) d x$
(d) $\pi \int_{0}^{\pi} f(\sin x) d x$

55. Let $S$ be a closed subset of $\mathbb{R}$, $T$ a compact subset of $\mathbb{R}$ such that $S \cap T \neq \phi$. Then, $S \cap T$ is (MCQ) $\begin{array}{ll}\text { (a) closed but not compact } & \text { (b) not closed }\end{array}$ (c) compact (d) neither closed nor compact
56. Let $S$ be the series $\sum_{k=1}^{-} \frac{1}{(2 k-1) 2^{(2 k-1)}}$ and $T$ be the series $\sum_{k=2}^{\infty}\left(\frac{3 k-4}{3 k+2}\right)^{\frac{(k+1)}{3}}$ of real numbers. Then, which one of the following is TRUE?
(MCQ

## (a) Both the series $S$ and $T$ are convergent (b) $S$ is convergent and $T$ is divergent

 (c) $S$ is divergent and $T$ is convergent $\quad$ (d) Both the series $S$ and $T$ are divergen
64. The value of the integral $\frac{(2 n)!}{2^{2 n}(n!)} \int_{-1}\left(1-x^{2}\right)^{n} d x, n \in \mathbb{N}$ is
(MCQ)
(a) $\frac{2}{(2 n+1)!}$
(b) $\frac{2 n}{(2 n+1)!}$
(c) $\frac{2(n!)}{2 n+1}$
(d) $\frac{(n+1)!}{2 n+1}$

66. Let $S \subset \mathbb{R}$ and $\partial S$ denote the set of points $x$ in $\mathbb{R}$ such that every neighbourhood of $x$ contains some points of $S$ as well as some points of complement of $S$. Further, let $\bar{S}$ denote the closure of $S$. Then which one of the following is FALSE? (MCQ)
(a) $\partial \mathbb{Q}=\mathbb{R}$
(b) $\partial(\mathbb{R} \mid T)=\partial T, T \subset \mathbb{R}$
(c) $\partial \overline{(\bar{T} \cup V})=\partial T \cup \partial V, T, V \subset \mathbb{R}, T \cap V \neq \phi$ (d) $\partial T=\bar{T} \cap(\mathbb{R} \backslash T), T \subset \mathbb{R}$
67. The sum of the series $\sum_{n=2}^{\bar{n}} \frac{(-1)^{n}}{n^{2}+n-2}$ is
$\begin{array}{llll}\text { (a) } \frac{1}{3} \ln 2-\frac{5}{18} & \text { (b) } \frac{1}{3} \ln 2-\frac{5}{6} & \text { (c) } \frac{2}{3} \ln 2-\frac{5}{18} & \text { (d) } \frac{2}{3} \ln 2-\frac{5}{6}\end{array}$
68. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)= \begin{cases}x\left(1+x^{a} \sin \left(\ell n x^{2}\right)\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$

Then, at $x=0$, the function $f$ is
(MCQ)
(a) continuous and differentiable when $\alpha=0$
(b) continuous and differentiable when $\alpha>0$
(c) continuous and differentiable when $-1<\boldsymbol{\alpha}<0$
(d) continuous and differentiable when $\alpha<-1$
69. Let $\left\{s_{n}\right\}$ be a sequence of positive real numbers satisfying $2 s_{n+1}=s_{n}^{2}+\frac{3}{4}, n \geq 1$. If $\alpha$ and $\beta$ are the roots of the cquation $x^{2}-2 x+\frac{3}{4}=0$ and $\alpha<s,<\beta$, then which of the following statement(s) is(are) tRUE?
(MSQ)
(a) $\left\{s_{n}\right\}$ is monotonically decreasing $\quad$ (b) $\left\{s_{n}\right\}$ is monotonically increasing
(c) $\lim _{n \rightarrow \infty} s_{n}=\alpha$
(d) $\lim _{n \rightarrow \infty} s_{n}=\beta$
70. The value(s) of the integral $\int_{-\pi}^{n}|x| \cos n x d x, n \geq 1$ is (are)
(a) 0, when $n$ is even
(b) 0 , when $n$ is odd
(c) $-\frac{4}{n^{2}}$, when $n$ is even
(d) $-\frac{4}{n^{2}}$, when $n$ is odd
71. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\left\{\begin{array}{cc}\frac{x y}{|x|}, & \text { if } x \neq 0 \\ 0, & \text { elsewhere }\end{array}\right.$.

Then, at the point $(0,0)$, which of the following statement(s) is (are) TRUE? (MSQ)
(a) f is not continuous $\quad$ (b) $f$ is continuous (c) f is differentiable
(d) Both first order partial derivatives of $f$ exist
72. Which of the following statement(s) is (are) TRUE?
(a) There exists a connected set in $\mathbb{R}$ which is not compact.
(b) Arbitrary union of closed intervals in $\mathbb{R}$ need not be compact
(c) Arbitrary union of closed intervals in $\mathbb{R}$ is always closed
(d) Every bounded infinite subset $V$ of $\mathbb{R}$ has a limit point in $V$ itself
73. Let $P(x)=\left(\frac{5}{13}\right)^{x}+\left(\frac{12}{13}\right)^{x}-1$ for all $x \in \mathbb{R}$. Then which of the following statement(s) is (are) TRUE? (MSQ)
(a) The equation $P(x)=0$ has exactly one solution in $\mathbb{R}$
(b) $P(x)$ is strictly increasing for all $x \in \mathbb{R}$
(c) The equation $P(x)=0$ has exactly two solutions in $\mathbb{R}$
(d) $P(x)$ is strictly decreasing for all $x \in \mathbb{R}$
74. Let $S=\left\{\left.\frac{1}{3^{n}}+\frac{1}{7^{m}} \right\rvert\, n, m \in \mathbb{N}\right\}$. Then, which of the following statement(s) is(are) TRUE? (MSQ) $\begin{array}{ll}\text { (a) } S \text { is closed } & \text { (b) } S \text { is not open }\end{array}$
$\begin{array}{ll}\text { (c) } S \text { is connected } & \text { (d) } 0 \text { is a limit point of } S\end{array}$



78. The radius of convergence of the power series $\sum_{=10} \frac{(-4)^{n}}{n(n+1)^{n}}(x+2)^{2 n}$ is (NAT)
79. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a continuous function such that $\int_{0}^{x} f(t) d t=-2+\frac{x^{2}}{2}+4 x \sin 2 x+2 \cos 2 x$.

Then, the value of $\frac{1}{\pi} f\left(\frac{\pi}{4}\right)$ is
80. The value of $\lim _{n \rightarrow \infty}\left(8 n-\frac{1}{n}\right)^{\frac{(-1)^{n}}{n^{2}}}$ is equal to
81. Let $f_{1}(x), f_{2}(x), g_{1}(x), g_{2}(x)$ be differentiable functions on $\mathbb{R}$. Let $F(x)=\left|\begin{array}{ll}f_{1}(x) & f_{2}(x) \\ g_{1}(x) & g_{2}(x)\end{array}\right|$ be the determinant
of the matrix $\left[\begin{array}{ll}f_{1}(x) & f_{2}(x) \\ g_{1}(x) & g_{2}(x)\end{array}\right]$ Then $F^{\prime}(x)$ is equal to $\quad$ (MCO)
(a) $\left|\begin{array}{ll}f_{1}^{\prime}(x) & f_{2}^{\prime}(x)\end{array}+\right| \begin{array}{ll}f_{1}(x) & g_{1}^{\prime}(x) \\ f_{2}^{\prime}(x) & g_{2}(x)\end{array} \quad$ (b) $\left|\begin{array}{ll}f_{1}^{\prime}(x) & f_{2}^{\prime}(x)\end{array}+\left|\begin{array}{ll}f_{1}(x) & g_{1}^{\prime}(x)\end{array}\right|\right.$
$\left|\begin{array}{ll}g_{1}(x) & g_{2}(x)\end{array}\right|+\left|\begin{array}{ll}+ & f_{2}^{\prime}(x) \\ g_{2}(x)\end{array}\right| \begin{array}{ll}g_{1}(x) & g_{2}(x)\end{array}{ }^{+}\left|\begin{array}{ll}f_{2}(x) & g_{2}^{\prime}(x)\end{array}\right|$
(c) $\left|\begin{array}{ll}f_{1}^{\prime}(x) & f_{2}^{\prime}(x)\end{array}\right|-\left|\begin{array}{cc}f_{1}(x) & g_{1}^{\prime}(x)\end{array}\right|$
(d) $\left|\begin{array}{ll}f_{1}^{\prime}(x) & f_{2}^{\prime}(x) \\ g_{1}^{\prime}(x) & g_{2}^{\prime}(x)\end{array}\right|$
82. Let $f(x)=\frac{x+|x|(1+x)}{x} \sin \left(\frac{1}{x}\right), x \neq 0$. Write $L=\lim _{x \rightarrow 0^{-}} f(x)$ and $R=\lim _{x \rightarrow 0^{-}} f(x)$. Then which of the following is TRUE? (a) $L$ exists but $R$ does not exist (b) $L$ does not exist but $R$ exists (c) Both L and R exist (d) Neither L nor R exists


85. Let $S$ be an infinite subset of $\mathbb{R}$ such that $S \backslash(\alpha)$ is compact for some $\alpha \in S$. Then which one of the following is TRUE?
86. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that $f(2)=2$ and $|f(x)-f(y)| \leq 5(|x-y|)^{3 / 2} f$ or all $x \in \mathbb{R}, y \in \mathbb{R}$. Let $g(x)=x^{3} f(x)$. Then $g^{\prime}(2)=$
(a) 5
(b) $\frac{15}{2}$
(c) 12
(d) 24
87. $\quad \sum_{n=1}^{\tan ^{-1}} \frac{2}{n^{2}}=$ $\begin{array}{ll}\text { (a) } \frac{\pi}{4} & \text { (b) } \frac{\pi}{2}\end{array}$ (b) $\frac{\pi}{2}$
(c) $\frac{3 \pi}{4}$
(MCQ)
(d) $\pi$
88. Let $f: \mathbb{R} \rightarrow[0, \infty)$ be a continuous function. Then which one of the following is NOT TRUE? (MCQ) (a) There exists $x \in \mathbb{R}$ such that $f(x)=\frac{f(0)+f(1)}{2}$
(b) There exists $x \in \mathbb{R}$ such that $f(x)=\sqrt{f(-1) f(1)}$
(c) There exists $x \in \mathbb{R}$ such that $f(x)=\int_{-1}^{1} f(t) d t$
(d) There exists $x \in \mathbb{R}$ such that $f(x)=\int_{0}^{1} f(t) d t$
89. Let $f(x, y)=\frac{x^{2} y}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0)$. Then
(a) $\frac{\partial f}{\partial x}$ and fare bounded
(c) $\frac{\partial f}{\partial x}$ is unbounded and $f$ is bounded
(b) $\frac{\partial f}{\partial x}$ is bounded and $f$ is unbounded
(d) $\frac{\partial f}{\partial x}$ and fare unbounded
90. Let $0-a_{j} * b_{\text {, for }} \geq 1$, define $a_{\ldots 1}=\sqrt{a_{*} b_{*}}$ and $b_{\ldots 1}=\frac{a_{*}+b_{\text {. }}}{2}$

Then which one of the followinge is NOT THUE,
(a) Both / $a_{n}$ / and / $h_{\text {/ }}$ / converge, but the limits are not equal
(b) Both (as) and 'th') converge and the limits are equal
(c) (b) is a decreasing sequence
(d) ( $a_{n}$ ) is an increasing sequence
91. $\lim _{\cdots \rightarrow} \frac{1}{\sqrt{n}}\left(\frac{1}{\sqrt{3}+\sqrt{6}}+\frac{1}{\sqrt{6}+\sqrt{9}}+\ldots+\frac{1}{\sqrt{3 n}+\sqrt{3 n+3}}\right)=\quad$ (MCQ)
(a) $1+\sqrt{3}$
(b) $\sqrt{3}$
(c) $\frac{1}{\sqrt{3}}$
(d) $\frac{1}{1+\sqrt{3}}$
92. The interval of convergence of the power series $\sum_{n=1}^{-} \frac{1}{(-3)^{n+2}} \frac{(4 x-12)^{n}}{n^{2}+1}$ is $\quad$ (MCQ)
$\begin{array}{llll}\text { (a) } \frac{10}{4} \leq x<\frac{14}{4} & \text { (b) } \frac{9}{4} \leq x<\frac{15}{4} & \text { (c) } \frac{10}{4} \leq x \leq \frac{14}{4} & \text { (d) } \frac{9}{4} \leq x \leq \frac{15}{4}\end{array}$
I
93. Which one of the followings is TRUE?
(a) Every sequence that has a convergent subsequence is a Cauchy sequence
(b) Every sequence that has a convergent subsequence is a bounded sequence
(c) The sequence $(\sin \pi$ ) has a convergent subsequence
(d) The sequence $\left\{n \cos \frac{1}{n}\right\}$ has a convergent subsequence

95. Let $S$ be the set of all rational numbers in $(0,1)$. Then which of the following statements is/are TRUE?
(MSQ
(a) $S$ is a closed subset of $\mathbb{R}$
(c) $S$ is an open subset of $\mathbb{R}$
(b) $S$ is not a closed subset of $\mathbb{R}$
(d) Every $x \in(0,1) \backslash S$ is a limit point of $S$
96. Let $\left\{x_{n}\right\}$ be a real sequence such that $7 x_{n+1}=x_{n}^{3}+6$ for $n \geq 1$. Then which of the following statements
are TRUE?
(MSQ)

97. $\quad \frac{1}{2 \pi}\left(\frac{\pi^{3}}{1!3}-\frac{\pi^{3}}{3!5}+\frac{\pi^{3}}{5!7}-\ldots+\frac{(-1)^{n-1} \pi^{2 n+1}}{(2 n-1)!(2 n+1)}+\ldots\right)=$

9s. $\left(\int_{0}^{1} x^{4}(1-x)^{5} d x\right)^{-1}=$
99. For $x>0$, let $[x]$ denote the greatest integer less than or equal to $x$.

Then $\lim _{x \rightarrow 0^{+}} x\left(\left[\frac{1}{x}\right]+\left[\frac{2}{x}\right]+\ldots+\left[\frac{10}{x}\right]\right)=$
100. If $y(x)=\int_{\sqrt{x}}^{x} \frac{e^{t}}{t} d t, x>0$, then $y^{\prime}(l)=$

