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6. fa) Let {a } be a sequence of non-negative real mumbers such that Lun converges, and let [k} be
nml

a strictly increasing sequence of positive integers. Show that a, also converges.
P
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) Suppose ff0.1] - R is differentiable and f'(x) < | at every x € (0,1). Iff{0) = 0 and ff1)=1,
show that fix)=x for all x€f0 1],
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Show that the seriesz‘

X
——————converges on R forp = 1
= dnQ+n”x?)
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8 fa) If £ is a subset of R that does not contain any of its limit points, then prove that E is a
countahle set,
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@) Letf: (ab)—R be a continuous function. If f is uniformly continuous, then prove that there
Vst a continuous function g ; [a,b] — R, such that g(x) = fix) for all x € fa.b).
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(a) monotonic
(c) bounded but not convergent
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L0

(I.J&

fstinct real roots of the equation x’ +x" +x' +x' +x+1=01s

10. The number

)3 (c) § (d) 9
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=
(b) Converges but not absolutely for x = -1
{d) Diverges for x = -2



12,

( Xlw

Ify :5] X _\xe R E , then the set of all limit points of ¥ is

x
1+ 1xh

(@ (1, 1) () (1, 1]
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() [0.1]

(d) [-1, 1]




13.

(a) Exami hether the following series is convergent i ot
35 (2n-1)

(B) For each xe R, let [x] denotes the integer less than or equal to x. Further, for a fived pe (0,4)
define a,= liﬂﬁl* n*g Jor all ne M. Shaw that the sequence fa } converges to B,
n
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14, (a) Shaw that the function f - & — R, defined by f(x)=x" forx €R, is not uniformly continuous,

()  Foreach neN, let f; R—R be a uniformly continuous function. If the seq
uniformly on B to a function {:R—R, then show that [ is uniformly continuous,

i} converges
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15

fa)

L]

Let A be a nonempty bounded subset of R. Show that {x €R | x 2 a for all a € A} is a closed
subset of B,

I ,
Let {x,} be a sequence in R such that | x,,, = x, |<— for all n € N. Show that the sequence
n
{x,} is convergent,
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1t Ler A and B be subsets of B, Which of the following is NOT necessarily trwe? (Mo
fal (AMBY c A" B M)A Ol S iAUR

el AUBCAUR () ANE c Al
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1% Let {x] denate the greatest integer function of x. The value of o for which the function

sin[—x") 20
Sar=4 -] 7 x ix continuous at x = (1 is
. x=0 MCQy
(a) 0 b sing-1) (e) sin | () 1
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e, X @5 rational

18 Let the function fix) be defined by fi(x) = . ) Sorxin (0, 1). Then (M)
X is irrational
fa) [ is continuous ai every point in (0, I). (b) f is discontinuous at every Jpaint in {110,

(e} ix discontinuous only at one point in (0.1). (d) f is continuous only at one point in (0, 1),
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2

1y 1y ay 1 :
1 —f1-21= s T —_— =2 Then lim x_ i 4
79, Let x, ( 3}(] 6} (! IOJ 1 WD .n en lim x5 MCQ)
2

1 1 L W) 0
@ 5 ® @ & @
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20 The function to whick the power series Z (=1)""n x*"7" converges is . (NAT)
Wt )
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1
2L Lel<asls = 23 and for n€N, let 5, = 2—(4“: +a). Show that the sequence s, is convergent

and find its limit.
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22, Let K be a compact subset of B with non-empty interior. Prove that, K is of the form [a, b] or of the
form fa, B] VU I, where {1} is a countable disjoint family of open intervals with end points in K
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23, The coefficient of (x - 1)° in the Taylor series expansion of fix) = xe' (x € R) about the point x = 1 is
(HCQ

(a) % (b) 2e (c) %‘:’ i 31'.
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Dhe rading of convergence of the power series E 28 en’ iy

1 .
faa) ) [ fe) 2 () 4

Mg,
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25 Letfo B — R beac Sinerion satisfing _‘.+jﬂ”u,,=r‘ —1 for all x € B Then the o

v e B o= fix) = 2 s the interval s Mogy
fal flog 2, log 37 (h) (2 lag 2 3log 3] (o) fe-1 & 1] fey [0, ]
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let o, = 2""(] —cos {ZI_"]J Sorall n € M. Then, the sequence {x}
1al does NOT converge () converges to (}

1
(ol converges fo 3 (d) converges (o %
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Let fx.j be a sequence of real numbers such that Ii_.m(x,u, —x,)=c, where ¢ is a positive rea]

number. Then, the sequence {x_} McQ)
n

fa) is NOT bounded (b) is bounded but NOT convergent

{c) converges to ¢ (d) converges to 0

New Section 1 Page 31



28

Let ¥ a, and ibﬁ be two series, where g =L”‘ e Jor all nEM. Then
= st " b " login+1)

(a) both 3 a, and 3 b, are absolutely convergent.

B} Za" is absolutely convergent but )b, is conditionally convergent.
n=] =l

fe) Za_ ix conditionally convergent but qu is absolutely convergent.

L n=]

(d) both Ea,, and be are conditionally convergent.
=
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2
. mmf{ x m} is MCQ
1+

Tt
x

(a) connected but NOT compact in B (b) compact but NOT connected in &

(c) compact and connected in R (d) neither compact nor connected in B
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30.  The set of all limit points of the set {i] txe (=1, 1)} inR is (MCQ)
x+

{a) [1, =) (b (1, =) {e) [-L.1] (d) [-1,=)
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. [ 2x if
Let 8 = [0 1] O[22, 3 and lec f 08— B be defined by fiqy - Ta—2ec if
0T tivd x o SE then the inverse function f 7T -« §

faad deses NOT eving

(b exises and is contimos
fedevists and is NOT continuos

(el) exises and is monotonic
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e [0.0]

e [2.3)

MO



E

5

Let fix) = x4 and giv) ~ x

x for all x € R, If " denotes the inverse Sunetion of f. then the

devivative of the compasite function go f ' at the point 2 is MCQ)

2 1
T ® 5
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33 Letf (0, o) — B be a differentiable function such that f(x*) =1—x* for all x > and f(1) = 0,

Then, fi4) equaly MCQ)
fa) =4 ) — 47 () — 16 ) — 8
5 1 3 5

New Section 1 Page 37



M. deS e RS 2000 and T= (X — 25 x € (0, =), The set SO T is MCQ)

fap cloved and hounded in 7 (h) cloged but NOT bounded in 7
fe) boended but NOT closed in T (dy neither closed nor bounded in B
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35 Letf: (0.0} — R be a differentiable function such that \('(x)| s 5, for all x & (0.1). Show thar the
r
sequence (lj[ 1 ]} converges in [R.

n+1

New Section 1 Page 39



6. If K is a non-empty closed subset of &, then show that the set {x + y :x € K, y € [1.2] } is closed in R.
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3%

Let § be a nonempty subset of B. If § is a finite union of disjoint bounded intervals, then which one of

the following is true?

(a) If'§ is not compact, then sup S & S and inf S & §

(b} Evenifsup S € Sand inf§ € 5, § need not be compact

(¢} If sup § € S and inf § € S, then § is compact

(d) Even if S is compact, it is not necessary that sup § € Sand inf S 8§
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3. Let {x,} be a convergent sequence of real numbers. If x, > x++2and x , =mx+\x, -7 Jornz L,
then which one of the following is the limit of this sequence? (MCQ)

@l ) T+2 © ) T+l
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Lot 0 B B be a differentiable fiunction with i) = 0. 0 forall e € B 7 = (o) = 2 then hic

one of the following seatemenis (s true on (1, oo ? /Mc'@
i tis unbounded () [ s increasing and bounded
(ol fhas ar least one zero (e} fix periodic
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S0,

Let A e a nonempy subset of B Let A) denote the set af interior points of A, Then {64} can pe

fard empr

th) singleron

feh a finite sef containing mare than one clement
fd) counrable but not finite
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p 1
41 The limit lim ——
o sinT x 7

in™ tdr is equal to ey
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42

Let S =[] 1 0,— L L 1| Whick one of the following statements is FALSE?
- | [ e M 2n )

fa) There exist sequences fa } and (b} in {0, 1] such that § = [0, l]'.LJ“'_I (a,.b,)
(B [0, 1]\S8 is an open set

(ch If A is an infinite subset of 5, then A has a limit point
{d) There exists an infinite subset of § having no limit points
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43 Letf: R — R be a sirictly increasing continuous function. If fa } is a sequence in [0, 1], then the
seguence {ffa )} is (MCQ)
(a) increasing (b) bounded (c) convergent {d) not necessarily bounded
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Which one of the following statements is true for the series z - (=" ! ﬁ ? (MCo)
P nin

oo pnlh

44.
ditionally but not ab fy

(a) The serics converges

() The series converges absolutely
(c) The sequence of partial sums of the series is bounded but not convergent

{d) The sequence of partial sums of the series is unbounded
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45, The sequence cos(l—tan ‘[_ 2]‘“1 is
2 2

(a) monotone and convergent
(¢) convergent but not monotone

New Section 1 Page 49

(b} monotone but not convergent
(d) neither monotone nor convergent

MCQ)



46.  Let G and H be nonempty subsets of &, where G is connected and G \U H is not connected. Which oné

of the following statements is true for all such G and H? McQ
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(ab 16 GOV o then H iy conneeted
(e IC GO o then s connected
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A COAE  then 1 is nat comnes ted
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47, Let {0 B B be a function defined by fix = i“ll =~ e In owhich of ghe fedlonwings intervalivg, [

takes the value 1 M5y

(b [-6, 0] thi [-2, 4] fe) [2, 8] fedy {6, 12§
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48

Which of the following condition(s) implies (imply) the convergence of a sequence {x ! of real numbers

(MEQ)
fa) Given & =0, there exists an n, € M such that forallnzn, |x,, x| = g

(h) Given &£ =0, there exists an ny=M such that for all nzn,, —]--—1 Xo=x |<
o (nen)? IS E

e} Given £ = (0, there exists an n, € [ such that for all n 2 n,, (n+ !)"Ix,“,—xq|-f. £
(d) Given £ =0, there exists an n,&M such that for all m, n with m=nzn,, |x x|< £
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49, Which of the following statements is (are} true on the interval [G. %] ? (M5Q)

fa) cos x < cos (sin x} (b) tanx < x
2 k3
(e v'“-x-:“-%—% fd 1- <2+ x)
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50. Let fig :{0.1]—[0,1] be functions. Let R(f) and R(g) be the ranges of fand g, respectively. Which of the
following statements is (are) true? (M5Q)
fa) If fix) < gix) for all x € [0, 1], then sup R(f) < inf R(g)
(B) If fix) < gfx) for some x € [0, 1], then inf R(f) < sup R(g)
() If fix) < gfy) for some x, y € [0, 1], then inf R(f) < sup R(g)
(d) If fix) < g(v) for all x, y € [0, 1], then sup R = inf Rig)
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. = n!
5L If the power series z _"xz-. converges for |x| < c and diverges for \x| > ¢, then the value of ¢,
n=o M
correct upto three decimal places, is R (NAT)
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6 _
52 Letf: R Rbedefined by f() =} _ x}.,' X Z g

The number of points at which f is continuous, is __

(NAT)
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53.

Let f: (0, 1) — ® be a continuously differentiable function such that * has finitely many zeros in (0, I}

o of these points. Then for any v € R, the maximun manber of

and f' changes sign at exactly tw
(NAT)

solutions to f(x) = yin (0, 1) is _ o
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i o R N,
Jd The Jmrit lin E o L is equial to D
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. Fid
i\ = XCOS | X+ —
S5 The coe ion f(x)=3sin [ )

y
- T . { o
cient of [_\'— ‘-1] in the Taylor series expansion of the funct

Ed ; (NAT)
x & W about the point =, correct wpto three decimal places, is
4

New Section 1 Page 60



x 3 - i
36, {f’L (e™" +cost) di has the power series expansion ZF, a,x", then aj, correct upio three decimal
Places, is equal 1o (D
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NAT)
57. The limit Yim Ed ( 1'_ - 1'_ is equal to N ( )
iyl tan Ty x
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. x0T . T
sin— S'"Z_z sin_
38 The sequence (s, } of real mumbers given by 5, = + ..t = js (MC
a st of given by 1.2 23 nin+1) <
fa) a divergent sequence (b) an oscillatory sequence

() not a Cauchy sequence {d) a Cauchy sequence
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E 4
59 Let f:[-1.1] — R be a continuous function. Then the integral fxf(sin x)dx is equivalent to (MCQ)
i

-’“’%If(s""ﬂdx fh)f[f(cou)dx © z[flcosx)dx (@ x| f(sinx)dx
[} ] ! e
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60 Thevaleof lm YOV 2 MCQ)

{z,y)-+(2,-2) X—]’—4

1 1
a) 0 - — =
(a) ) 4 fc) 3 (d)
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6l.  Let§ be a closed subset of B, T a compact subset of B such that S N T#¢. Then, S N Tis (MCQ)
(a} elosed but not compact (b) not closed
() compact (d) neither closed nor compact
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fiel}

62, Let § be the series EW and T be the series i( %] ? of real numbers. Then, which
b=l - = +e)
ane of the following is TRUE? MCQ)
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) Both the series S and T are convergent th) 5 is canvergent and T is divergent
() § ix divergent and T is convergent (ed) fioth the series 5 and T are divergent
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a wegquence of positive real numbers sarisfving

the tesms of the sequence lie in

L. 3]
r.u.lz, 3] it o, 1 fel 1,2
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w1

n=ln

[CINIT]

i

Then, all

MO0y



e vl of the iy 420 2an - w
64, The value of the integral 3 (1) i‘“ — 'Y dx, ne Mis MeQ)
2 n 2(n') (n+ 1y
fa) — = By = fe) ——= 41y
‘ 2n 41 ! (213! ‘ I+l ) ry

2n+
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Let § = B and 95 denote the set of points x in B such that every

g hood of x ins some
points of § as well as some points of complement of 5. Further, let § denote the closure of S. Then
which one of the following is FALSE?

() 00 = R

MCQ)
(h)d(R\T) = 3T, TCR
(@ATUV)=dTUINT,VER TNVEG (aT=TNR\T), TRk
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67. The sum of the series i % is MCQ)
mn4n-2

1 5 2 5 2 5
(@) Lz 5 (b) —fn2—-= ey Y _
3in2 i 1] 3 n p ] 3fn 8 (e} 3En2 o
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Letf: R — R be defined as f(x) = {;(I +x"sin(fnx’)) if x20

if x=0
MCQ)
Then, at x = 0, the function f is
(a) conti and differentiable when o = ()
(b) conti and differentiable when o > 0
fc) conti and differentiable when -1<at<0
(d) conti and differentiable when o< -1
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09,

3 .
Let {5} be @ sequence of positive real numbers satisfving 28,,,= 54 4 nzl if & and [} are the

r00ts of the cquation x* — 2%+ =0 and o< 5,< B, then which of the following statement(s} isgay,,
4

TRUE? Msg
fa) {x, ! is monotonically deereasing (h) {5, } ix monotonically increasing
fe) lim _yos, = (d) lim, _y 5, = B
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70, The value(s) of the integral JI xleosnxdx, nzl is fare) KKSQJ
fa) 0, when n is even (b} O, when n is odd
4 4 .
fe) ===, when n is even fd) —— , when n is odd
n n
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7

Letf: R = R be defined by f(x,y)=1qlx]

Xy

0

if x#0

, elsewhere

Then, at the point (0.0), whick of the following statement(s) is (are) TRUE?

fa) fis not continuous
(c) fis differentiable

New Section 1 Page 77

(B) fis continuous
(d) Both first order partial derivatives of f exist

M5Q)



72 Which of the following statement(s) is {are) TRUE? (MSQ)
(a) There exists a connected set in B which is not compact.
(h) Arbitrary union of closed intervals in B need not be compact
fe) Arbitrary union of closed intervals in R is always closed
(d) Every bounded infinite subset V of R has a limit point in V itself
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73.

Let P(x)= [%] +{ : 3] =1 forall x& R. Then which of the following statement(s) is (are) TRUE?

MSQ)
(a) The equation P(x) = (0 has exactly one solution in R
) Pix) is strictly increasing for all x € R

(¢) The equation P(x) = 0 has exactly two solutions in R
{d) Pix) is strictly decreasing for all x € R
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1
74. Let §= {7}_—+?_—| \n, me i } . Then, which of the following statement(s) isfare) TRUE? ~ (MSQ)
(a) S is closed (b) S is not open
(c) § is connected {d) 0 is a limit point of S
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e

S a3 seguenor of real mombers given by s

ke seguence (5. 0s
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"t

Lot i3 I soyemee of real nambers, where s, = 854 & >

Then, limgs,
B

U A

I

[» olh]

ATy

New Section 1 Page 82




2 1 2
x -2y

- - = . =i ressedas [(xX)= =+ —(r=2)+.

If £ -1, =) — B defined by f(x) o= is exp 37 J 0 —

where E lies berween 2 and x, then, the value of ¢ is NAT)
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o .
78. The radius of convergence of the power series Zm[x + 2" is o o (NAT)
=l
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79. Let f:(0, %) 3R bea continuous function such that j flndr=-24 ﬁ +4x5in2x 4+ 2 ened
H 2 <008 Ly,

1 Fid
Then, the val, — =i
ueofxf(4] is INAT)
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=8
80.  The value of 'I.im(%n - l) " is equal to (NAT)
e n
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&1.

Let fy(x), f(x), g,(x), g,(x) be differentiable functions on R. Let F(x)=

of the matrix |:

fe)

f& @),
g(x) g,(x)
£(x) f,’(x)J_
gi(x) g,(x

filx) filx)
gi(x) gi(x)
fi(x)
fi(x)
fi(x)
f2(x)

}Tken F'{x) is equal to

g,(X)J ) fx)
£,(x 2,(x)
s[(x) @ f.:m
2;(x) £(x)

New Section 1 Page 87

filx

)

2,0x)

fitx
gilx

’J

£i(x) galx

L@ g
f; (x) R:i-‘)

) filx)

)‘ be the determinant

(MCQ)



82,

Let fix) =I_+|M Sil'l[
X

of the following is TRUE?
fa) L exists but R does not exist

(b) L does not exist but R exists
(c) Both L and R exist

{d) Neither L nor R exists

New Section 1 Page 88

l], x#0. Write L=lim___ f(x) and R=lim . f(x). Then which
X

MCQ)
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sS4 Ir lim {: e Vdv="" then lim j! Ve Vdy =
e ] 2 7_. n ""’('Q.l
x Jr N
(a) ‘4- ® = te) N2x ) 2
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&5,

Let § be an infinite subser of B such that 8\ fa) is compact for some e §. Then which ane of
following is TRUE? r-Mclﬁe
ta) § is a connected set o
(b 8§ contains no limit points

fc) § is a union of open intervals
fd) Every sequence in S has a subsequence converging to an element in §
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6. Let f: B — R be a differentiable function such that f{2) = 2 and | f(x)- f(y)| < S0x=y0)*"? for
allxe R ye R Let g(x) = x'fix). Theng'(2) = (McCg)
fa) 5 ] % fc) 12 (d) 24
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T
(b)-z—
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in
fc) T

fd)

MCQ)



&8,

Let f: R — [0, =) be a continuous function. Then which one of the following is NOT TRUE? (MCQ)
(a) There exists xe R such that f(x) = M

(b) There exists x€ R such that f(x) =,/ f(-1) f(1)
(c) There exists x& R such that f(x)= j'l Fit)de

(d) There exists xe B such that f(x) = J:f(.-]d:
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Xy

8.  Le flxy) = Jor (x, y) # (0, 0). Then

x4yt
y o .
(a) x and fare bounded (b) p is bounded and fis unbounded
x
(c) % is unbounded and [ is bounded (d) %J: and fare unbounded
x
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o0, Lett = a, = b, Forn2 |l define a . = ‘,"‘a_b. and b,
Then which one of the follawingy 1t NOT TRUE?

ta) Hoth fa l and th ) converge, but the Jimity are rot equal
thi Roth fa ) and [h} converge and the limits are eoqual

gl b a decreaving veguence

fd) fa l is an increasing sequence
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S 1 1
1. lim—=| ——+——+t. .t ——="F— = .
SRS E TN V3n +\"3ﬂ+3J Mo
= . o 1
(@) 1443 3 (e () —
v I 3 1443
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92 The interva of convergence of the power series 3 Mco)
=
5 10 14 9
) 0y 14 ity 2 xel? o Bercld @ -<x<ld
4 4 4 4 4 4
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1.

Which one of the followings is TRUE?
fa) Every sequence that has a convergent subsequence is a Cauchy sequence
is a bounded seq

(B) Every sequence that has a convergent
() The sequence sin} has a convergent subsequence

(d) The sequence {nms 1} has a convergent subsequence
n
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1 1
- = 3

94, Let M =2 4 |and x=[ . Then limM "x
o 1 4 et

(a) does not exist b} is [12]
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|2
(c) is 4

13
(d) is 4

mce



95, Let § be the set of all rational numbers in (0, 1). Then which of the - following statements is/are TRUE?
(M5Q)
(a) § is a closed subset of R (b) S is not a closed subset of R
fc) § is an open subset of R (d) Every x € (0, 1)\ § is a limit point of §
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96.  Let {x,} be a real sequence such that 7x,,, = x, +6 for n 2 I. Then which of the following statements
are TRUE? MSQ)

New Section 1 Page 102



ral I, L then (v comvenes fo f (I x, = then [x,} vonverges fo 2

(el I a, = Sothen (U comveryes to I (el) If x, ==, then fx ) converges o -3

1
2
3
2
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. -1
95, ..f"‘”_"']-‘d"} -

\o
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99. Forx > 0, let [x] denote the greatest integer less than or equal to x.

SN —
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100 If y(x) :j’;%a.x >0, then y'(1) =
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