


$$
\begin{aligned}
& \left(\begin{array}{l}
a=3 \\
b=2 \\
c=1
\end{array}\right) \\
& \hline+\infty
\end{aligned}
$$


$C>B>A>D$. Steeper me lime Angles the ample

$C 0.0=\frac{00}{8 \mathrm{sin}}-2 \frac{1}{0}=$


$$
\begin{aligned}
& \pi / 2-(-\pi / 2)=\pi \\
& 3 \pi / 2-\pi / 2=(\pi)
\end{aligned}
$$





If $\sin x \rightarrow \sin (x+\alpha)$ shen shapteft
tue mean leyt tre wer Rywr


Some Useful xechution

$$
x
$$

$$
\tan ^{2} \pi x^{\pi} \pi n
$$

$$
\begin{aligned}
& \tan >x>\sin x \\
& \sin x>x>\tan x
\end{aligned}
$$

$$
\begin{gathered}
\sin (0,9 / 2) \\
(-\pi / 20)
\end{gathered}
$$

4 Some
( 1896 )
important slates

$$
\operatorname{Cin} \theta+\operatorname{Ci}(\alpha+\theta)-2 \operatorname{Co\alpha } \operatorname{Coc} \cos (\alpha+\theta)
$$

$$
=\ln \theta+\operatorname{Cos}(\alpha+\theta)[\operatorname{Cn}(\alpha+\theta)-2 \operatorname{Con} \alpha]
$$

$$
\begin{aligned}
& \left.=h^{2} \theta+h o s i \alpha+\theta\right)\left[C^{\prime} d u \theta-\operatorname{soxata}-2 h-\alpha h \theta\right] \\
& =\cos \theta-\cos (\alpha \alpha \alpha)[\cos \alpha \theta \theta-\sin \alpha \sin \alpha-2 \cos \sin \alpha) \\
& =\omega^{2} \theta-\left[a^{2} \alpha-\sin ^{2} \theta\right) \\
& =2^{2} \theta+\sin ^{2} \theta-\operatorname{cis}^{2} \alpha \\
& =1-a^{2 \alpha} \quad\left(5^{2}+c^{2}-\right)
\end{aligned}
$$

the armbra of $\alpha$

Tonit do
wanten

$$
\begin{aligned}
& \sin \theta=\sin x+(-1)^{n} \alpha \\
& \theta=n \pi t
\end{aligned}
$$



$$
\begin{aligned}
& 1+\left(h _ { x } \left|+\left|\omega_{x}\right|^{2}+\ldots, \infty=2\right.\right. \\
& \frac{1}{2^{1-|(\omega)|}}=2^{2} \\
& \frac{1}{1-|\sigma x|}=2^{1} \\
& 1 \omega_{x 1}=1 / 2 \quad a_{x}= \pm \frac{1}{2} \\
& x=2 \pi n \pm \pi / 3
\end{aligned}
$$

H Tom $\mathrm{sol}_{\mathrm{n}}$ of $(\operatorname{Car} x)=\sin \quad 0 \leq x \leq 4 x$
@ Can $x \operatorname{sim} x$

$$
\begin{array}{ll}
x=\operatorname{sim} x & \overrightarrow{(2 \pi} \pi+\pi / 4 \\
\tan x=1 & x=\pi / 4 / 4,9
\end{array}
$$

\# G G W
vort weel

$$
|\sqrt{3} h x-\sin x| \geqslant 2
$$

$$
\begin{aligned}
& -\sin x \mid \geqslant 2 \\
& \text { for } x \in[0,4 \pi)
\end{aligned}
$$

$$
\begin{equation*}
|\sqrt{3} h x-\sin +| \leq \sqrt{3 x 1}=2 \tag{1}
\end{equation*}
$$

$$
(53 / v e-\text { ofre) } \geqslant 2-\text {-(11) }
$$

Ufue $(1,2) \longrightarrow(3, \operatorname{lin}-8-1)=2$

$$
\begin{aligned}
& {\left[\frac{v^{3}}{2} \operatorname{Com}-\sin _{2} x\right]=\dot{c}} \\
& C \pi / 6 \operatorname{Lx}-\operatorname{Son} \nabla /\left(1 x^{x}\right)=1 \\
& \operatorname{Cn}(x+\pi / 6)=1 \\
& G(x+\pi / 0)-1) \\
& x+\pi / 6=0,2 \pi, 6 \pi, \ldots \text { sin, ar } \\
& x=\left\{\frac{11 \pi}{6}, 2: \frac{\pi}{6}, \frac{\pi \pi}{6}, \frac{\pi n}{6}\right\}
\end{aligned}
$$

