Amxn, BnxK (XAX) _n randles Hospine Deforte Neph depte mi m EJCO non-roch Senirdepte mi m EJCO Turk sui-det - EJZO Turk 1(A1AT) +12(A -- T) -- (A) 7. Then N is (2 marks) (A) non-invertible (B) skew-symmetric (C) symmetric (D) orthogonal | 12. Which of the following matrices is not diagonalizable? (A) \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} \] If a & which limit i.v. are equily fluggling that the party of | | |---|--| | | | | 14. | The dimension of the (A) 0 | range space of T^2 is (B) I | (C) 2 | (D) 3 | (2 marks) | |-----|----------------------------|---------------------------------|-------|-------|-----------| 2° +2x+(=0. The dimension of the null space of T^3 is (A) 0 (B) 1 (C) 2 (D) 3 (2 marks) 17. If a 3×3 real skew-symmetric matrix has an eigenvalue (2i) then one of the remaining eigenvalues is (A) $\frac{1}{2i}$ (B) $-\frac{1}{2i}$ (C) 0 (D) 1 (V > {Now Party to Zero} First by Arithmetric for Zero (Six also (2i)) (N, od) (Rear symmetric matrix has an eigenvalue (2i) then one of the remaining eigenvalues is (I mark) (A) $\frac{1}{2i}$ (B) $-\frac{1}{2i}$ (C) 0 (D) 1 (N > Zero) (Six also (2i)) (2i) | 35. | The possible set | t of eigen values of a 4×4
(B) {±i,±1} | skew – symmetric orthog
(C) {±1} | gonal real matrix is (D) $\{0,\pm i\}$ | (I mark) | |-----|------------------|---|-------------------------------------|--|----------| | 200 | If the characteristic polynomial and minimal polynomial of a square matrix A are $(\lambda-1)$ $(\lambda+1)^4$ | | |-----|---|--| | 79. | If the characteristic polynomial and minimal polynomial of a square matrix A are $(A-1)(A+1)$ | | | | if the characteristic positioning the matrix $A + I$ is, where I is the identity matrix of appropriate order (I mark) | | | | in munity man at system of the munity | 86. Suppose V is a finite dimensional non-zero vector space over \mathbb{C} and $T:V\to V$ is a linear transformation such that Range(T) = Null space (T). Then which of the following statements is FALSE? (A) The dimension of V is even (B) 0 is the only eigenvalue of T (C) Both 0 and 1 are eigenvalues of T (D) $T^2=0$ | | | |--|-----|--| | transformation such that Range(T) = Null space (T). Then which of the following statements is FALSE? (2 marks) (A) The dimension of V is even (B) 0 is the only eigenvalue of T | | | | | 86. | transformation such that Range(T) = Null space (T). Then which of the following statements is FALSE? (2 marks) (A) The dimension of V is even (B) 0 is the only eigenvalue of T |