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Below you can see a plot of two empirical cumulative distribution functions
(eCDF). Each of the eCDFs are plotted using 1 000 realizations of one of two
random variables — A and B.
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Answer the following questions based on the eCDFs. B

0.

/Kguppusc both A and B are Binomial distributions with a common n and
different ps. What is the value of the common parameter n? Explain in
one or two sentences.

Solution

Since both have the same parameter n, | e the larger value
for which there's a jump in the CDF. So/n = 15.

ii. Which of the 2 variables has a larger median? Explain in one or two
sentences.

Solution

B has a larger median since its eCDF crosses 0.5 on the y-axis along
at a greater point along the x-axis.
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Question 2

A skate rental shop records the time between skates being rented and being
returned. Analyzing 100 returns, the average time to return is found to be 2
hours. The shop opens for 4 hours daily and overnight rentals are not allowed.

——

Part a)

Suggest a reasonable parametric model among the models listed in Table 1
for the rental times assuming they are a random sample. What additional
assumptions are you making with the selected distribution? Are any of the
model assumptions unrealistic? Explain in a few sentences. ~—
Solution

Given the time until rental return data, an Exponential distribution
would be the most suitable choice among the distributions listed.

In addition to the each return time being independent and identical,
the model assumes that the rental return is a Poisson process. That
is, the likelihood of rental return at any moment is independent and
identical.

The rental shop is open for 4 hours per day only. But an exponential
random variable can take any positive real number.

Alternatively, you may have assumed a uniform distribution since
the rental time is bounded. However, this is not appropriate since
not every one rents their skates when the shop opens.

In either case, the indpendence assumption may be unrealistic since
skaters rent together with friends and family. They are likely to
return at the same time.

Part b)

What is your best guess for the parameter(s) of your selected model based on
the given information? State any probability rules that support your guess.
Solution

Let X be the skate return time. If we assume X ~ Exp(A), E(X) =
7‘\. The sample mean over the n = 100 repairs is Z5, = 2 hours.

Thus, a reasonable estimate of A = 1/2 = 0.5 based on the law of
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Question 3
Suppose X, Xs, ..., X, iid Exp(A). Is the estimator A= Xy =min(X;, X, .. X,,)
an unbiased estimator?
Hint: ) Ld{' b{' Y(‘)
( P(X) < .r)% 1-P(X(1y > z) = 1-P((X1 > 2)N(X2 > 2)N..N(X, > z))
Solution:
PX1)<2)=1-PXg>z)=1-P((X1>2)N(X2>z)N..N(Xn > x))
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