Q. Plot the iso quant and find the cost function for the following production functions:
(i) $q=\min \left\{\frac{L}{a}, \frac{k}{b}\right\}, a, b>0 .[$ Leontief's production $f n]$

At opt: $\frac{L}{a}=\frac{K}{b} \Rightarrow \frac{K}{L}=\frac{b}{a}$

$$
\begin{aligned}
& \text { Case I: } \frac{K}{L}>\frac{b}{a} \text { or } \frac{K}{b}>\frac{L}{a} \\
& \therefore q
\end{aligned} \begin{aligned}
& \therefore \min \left\{\frac{L}{a}, \frac{k}{b}\right\}=\frac{L}{a} \\
& q=\frac{L}{a}, \text { Fix } q=\bar{q} \Rightarrow \bar{q}=\frac{L}{a} \\
& \text { Diff: } d \bar{q}=\frac{1}{a} \cdot d L \Rightarrow d L=0
\end{aligned}
$$



Isocost line $(\bar{C})$

Slope of isoquant $\frac{d K}{d L} \rightarrow \infty \quad[$ vertical $]$.

$$
\text { Case II: } \begin{aligned}
\frac{K}{L}<\frac{b}{a} & \Rightarrow \frac{K}{b}<\frac{L}{a} \\
\frac{d K}{d L} & =0 \quad \text { [homizontal }]
\end{aligned}
$$

Cost Function:

$$
\left\{\begin{array}{l}
\operatorname{Min} \quad w L+r K \\
\{L, K\}
\end{array}\right.
$$

Cost $\exp C=W L+M K .\left[\begin{array}{l}\text { Combination of } L, K \text { that } \\ \text { are affordabic }\end{array}\right.$ are affordable given $\bar{c}$ ]
$F_{i x} C=\bar{C} \Rightarrow \bar{C}=\omega L+r k, \ldots$ plot this eqn

$$
\begin{aligned}
\therefore \quad d \bar{c} & =w \cdot d L+M \cdot d K \\
\frac{d K}{d L} & =-\frac{w}{r}<0
\end{aligned}
$$

$A B$ : Minimum possible isocost line.
$\therefore$ At opt: $\quad \begin{aligned} \frac{L}{a}=\frac{k}{b}=q & \Rightarrow L^{*}\end{aligned}=a q$

$$
\begin{aligned}
\therefore \text { Cost } f_{n}=\omega L^{*}+r k^{*} & =\omega \cdot a q+r b q \\
& =(\omega a+r b) q
\end{aligned}
$$

Q. $\quad q=a L+b K, \quad a, b>0 \ldots$ [Perfect Substitutes]

Fix $q=\bar{q} \Rightarrow \bar{q}=a L+b k$
Diff $\quad d \bar{q}=a \cdot d L+b \cdot d k$.

$$
\begin{aligned}
d \bar{q}=0 & \Rightarrow a d L+b d K=0 \\
& \Rightarrow \frac{d K}{d L}=-\frac{a}{b}
\end{aligned}
$$

For cost fin: fix $q=\bar{q}$
(i) Isocost steeper than iso quant

$$
\begin{aligned}
& L^{*}=0, \quad \bar{q}=b K \Rightarrow K^{*}=\frac{q}{b} \\
& C_{1}=\omega L^{*}+M K^{*}=\frac{\pi \cdot q}{b} w
\end{aligned}
$$


(u) Isoquant steeper than isocost

$$
\begin{aligned}
& K^{*}=0, \quad \bar{q}=a L \Rightarrow L^{*}=\frac{q}{a} \\
& c_{2}=\omega L^{*}+M K^{*}=\frac{\omega \dot{q} w}{a} w
\end{aligned}
$$



Cost function: $C=\min \left\{C_{1}, c_{2}\right\}$

$$
=\min \left\{\frac{r q}{b}, \frac{\omega q}{a}\right\}=q \min \left\{\frac{\omega}{a}, \frac{r}{b}\right\}
$$

(wu) Isocost \& Isoquant overlap
K

$$
\uparrow \Rightarrow \text { Min possible } 1, \bar{c} \text { ) }
$$

(wu) Isocost \& Isoquant overlap This need not be accounted for separately.

Q. $q=A L^{\alpha} K^{\beta} \ldots$ [Cobb-DougLas production $f n$ ]
(i) $A=$ level of technology
$\alpha=$ shame of labour in the procluction process $5=\left(\frac{M P L \cdot L}{q}\right)$

$$
\left.q=A L^{\alpha} K^{\beta},: \frac{M p_{L} \cdot L}{q}=\alpha, \Rightarrow \text { derived }\right]
$$

$$
=\left(\frac{M p_{k} \cdot k}{q}\right)
$$

(ix) Returns to Scale: Change in $q$, when $L, K$ changed in same prop

$$
\begin{aligned}
& q=q(L, K)=A L^{\alpha} K^{\beta} \\
& q(\lambda L, \lambda K)=A(\lambda L)^{\alpha}(\lambda K)^{\beta} \\
&=\lambda^{\alpha+\beta} A L^{\alpha} K \beta=\lambda^{\alpha+\beta} q(L, K) \\
& \therefore q(\lambda L, \lambda K)=\lambda^{\alpha+\beta} q(L, K) .
\end{aligned}
$$

Case I: $\alpha+\beta>1 \Rightarrow$ Increasing Returns to scale (IRS)
Case II: $\alpha+\beta=1 \Rightarrow$ Constant Returns to scale (CRS)
Case II: $\alpha+\beta<1 \Rightarrow$ Decreasing Returns to scale (DRS)
Making isoquants:
Fix $q=\bar{q} \Rightarrow \bar{q}=A L^{\alpha} K \beta$.
Diff: $d \bar{q}=A\left[K^{\beta \cdot \alpha} \cdot L^{\alpha-1} d L+L^{\alpha} \cdot \beta K^{\beta-1} d K\right]$

$$
\begin{aligned}
& d q=0 \Rightarrow A\left[\alpha K^{\beta} L^{\alpha-1} d L+\beta L^{\alpha} k^{\beta-1} d K\right]=0 \\
& A \neq 0 \Rightarrow \alpha \cdot K^{\beta} L^{\alpha-1} d L+\beta \cdot L^{\alpha} K^{\beta-1} d K=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left(\frac{\alpha}{L}\right) K^{\beta} L^{\alpha} d L+\left(\frac{\beta}{K}\right) \cdot L^{\alpha} K^{\beta} d K=0 \\
& \Rightarrow K^{\beta} L^{\alpha}\left[\left(\frac{\alpha}{L}\right) \cdot d L+\left(\frac{\beta}{K}\right) d K\right]=0 \\
& K^{\beta} L^{\alpha} \neq 0 \Rightarrow\left(\frac{\alpha}{L}\right) d L+\left(\frac{\beta}{k}\right) \cdot d K=0 \\
& \Rightarrow \frac{d k}{d L}=-\frac{(\alpha / L)}{(\beta / k)}=-\left(\frac{\alpha}{\beta}\right)\left(\frac{K}{L}\right)<0 \\
& \frac{d^{2} k}{d L^{2}}=\frac{d}{d L}\left[\frac{d K}{d L}\right]=\frac{d}{d L}\left[-\left(\frac{\alpha}{\beta}\right)\left(\frac{k}{L}\right)\right] \quad k \\
&=-\left(\frac{\alpha}{\beta}\right) \cdot \frac{d}{d L}\left(\frac{k}{L}\right) \\
&=-\left(\frac{\alpha}{\beta}\right)\left[\frac{\left.L \cdot \frac{d k}{d L}-K \cdot\right]}{L^{2}}\right] \quad 0 \\
&=-\left(\frac{\alpha}{\beta}\right)\left[\frac{k \cdot\left(-\frac{\alpha}{\beta}\right) \cdot\left(\frac{k}{K}\right)-k}{L^{2}}\right] \\
&=\left(\frac{\alpha}{\beta}\right)\left[\frac{\left(\frac{\alpha}{\beta}\right) k+k}{L^{2}}\right] \\
&=\left(\frac{\alpha}{\beta}\right)\left[\frac{\alpha K+\beta k}{\beta L^{2}}\right]=\frac{\alpha K(\alpha+\beta)}{\beta^{2} L^{2}}>0
\end{aligned}
$$

[convex]

