LINEAR ALGEBRA SESSION FOR 09.11.23

42.	Let V be a vector space of dimension $m \ge 2$. Let $T:V \to V$ be linear transformation such that $T^{**} = 0$ for some $n \ge 1$. Then which of the following is necessary $TRUE$? (2 morty) (A) Rank $(T') \le Nullity$ (T') (B) trace $(T) \ne 0$ (C) T is diagonalizable (D) $n=m$

32=16x2x1 =19 32=4x8x1=13~ 32= Let $A \in M_1(\mathbb{R})$ be such that $\det(A-1)$. If trace (A) = 13 and $\det(A) = 32$, the 100 040 123456789132134781 2013 cache of 4

- 57. Let M be an invertible Hermitian matrix and let $x, y \in \mathbb{R}$ be such that $x^2 < 4y$. Then. (2 marks) (A) both $M^2 + xM + yI$ and $M^2 - xM + yI$ are singular (B) $M^2 + xM + yI$ is singular but $M^2 - xM + yI$ is non-singular

 - (C) $M^2 + xM + yI$ is non-singular but $M^2 xM + yI$ is singular
 - (D) both $M^2 + xM + yI$ and $M^2 xM + yI$ are non-singular

71. Let $A = (a_n)$ be a 10 ×10 matrix such that $a_q = 1$ for $i \neq j$ and $a_n = \alpha + 1$, where $\alpha > 0$. Let λ and μ be the largest and the smallest eigenvalues of A, respectively. If $\lambda + \mu = 24$, then α equals (2 marks)

79.	If the characteristic polynomial and minimal polynomial of a square matrix A are (h-1) (h. + 1) (h. 2) cospectively, then the rank of the matrix A + 1 is (I mark) (I mark)

86.	Suppose V is a finite dimensional non-zero vector space over \mathbb{C} and $T:V\to V$ is a linear transformation such that Range(T) = Null space (T). Then which of the following statements is FALSE? (2 marks) (A) The dimension of V is even (B) 0 is the only eigenvalue of T (C) Both 0 and 1 are eigenvalues of T (D) $T^2 = 0$