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The possible set of eigen values of g orthogonal real matrix is (I mark)
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38 Let M be the real vector space of 2x3 matrices with real entries, Let T:M—M be defined by
- X, X
r([" 5 D=[ 3R 'J. The determinant of T is (2 marky)
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41, Let X be the space of all 4%3 matrices with entries in the field of three elements. Then the number
of matrices of rank three in M is (2 marks)
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Let 1" b a vector space of dimension m2 2. Lel T:¥—s¥ be linear transformation such phg ™

and T = 0 fir some n 21, Then which of the following is necessary TRUE?
(A} Rank(T™) s Nullity (T3 (8) trace(T) 0
(C) T is diagonalizahle (D) n=m
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93, Ler A € M,R) be such that des( A~ 1) =0, where I denotes the 3x3 identity matrix,
If trace (A) =13 and det(d) = 32, then the sum of squares of the eigen values of A is
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Ler Ty R'—= R’ be a lincar transformation such that T, o7, =T,. Then rank (T} i

' B LT, To R — R belincar transformations such that rank(T,) = 3 and nulliT,) = 3.

(2 marks)
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u”kéﬂlﬁ_ﬂﬂ’! igenvalues of M. If
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S7 Ler Mbean imverrible Hermition matric and let <,y € R be such that x* <4y. Then. (2 marky)

() both M 4 XM + yI and M = xM + yI are singular
(B) M7 +xM+ vl s ximguiar but M° - xM + ¥l ix mon-singular
(C) M* +xM+ ¥l is non-singutar bur M * = xM + yl i singuiar
(D) boih M* +xM +yl and M* —xM + yl are non-singular
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If &+ [ = 24, then O equaly
(2 marky)

7L Lot d - fa) b 200 XN mairiv such that @,
b the Fargest and the smallest cigenvalies of A, respectivel).
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Consider the subspaces W, ={(x,. x,, 5, )€ R": x =X, +2%,)
Wy =[(x. 5. %)E R 5 =35, +2x5}
of B'. Then the dimension of W, + W, equals

(1 marky)
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Consider the mair A =1y~ 2u"wwith = 111,11, 1,1, 1,1, 1], where I, is the 9 9 dertiy
marix and u' is the transpose of w. If \-and u are two distinct eigenvalues of 4, then [A = #l *
p-l”




M Af the char and imictd of a square matrix A are (A-1) (A + 1)*
=21 and (-1} rl. + H A-2), respectively, then the rank of the matrix A + I is where I (s
the identiry marrix of approprite arder. (1 mark)




Let ¥ be the vector space of all 3 x 3 matrices with complex entries aver the real field. If

W ={AeV:A=AT)and ¥, = (A € V : trace of A = 0}, then the dimension of W, + W, is equal
o . (2 marks)
(A7 denotes the conjugate transpose of A)




8.

Suppose V is u finite dimensional non-zero vector space over Cand T : ¥ — V (5 a linear
trangformarion such that Range(T) = Null space (T). Then which of the following statements is
FALSE? (2 marks)
{A) The dimension of V is even (B) 0 is the only cigemvalue of T
{C) Both 0 and | are eigenvalues of T D=0



