Number Systems
Tuesday, March 14, 2023 8:00 PM

$$
\{(2 n+1), n \in \mathbb{N}\} \rightarrow o d d
$$

odd ${ }^{2}$

$$
(2 n+1)^{2}=4 n^{2}+4 n+1=\underbrace{4\left(n^{2}+n\right)}_{\text {even }}+1
$$

EXAMPLE 1. If $(a / b)<(c / d)$ with $b>0, d>0$ show that $(a+c) /(b+d)$ lies between alb and cId. (where a, b, c, d are real numbers).
$\frac{a}{b}<\frac{c}{d} \quad \Rightarrow \quad a d<b c \quad \Rightarrow \quad a b+a d<a b+b c$
To show

$$
\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}
$$

Implies \rightarrow between 2 ad $\langle b c \Rightarrow c d+a d<c d+b c$ real numbers, there is

$$
\begin{array}{ll}
\Rightarrow & a(b+d)<b(a+c) \\
\Rightarrow & \frac{a}{b}<\frac{a+c}{b+d} \tag{1}
\end{array}
$$

$$
\begin{align*}
& \text { another real number } 1 / 4 \\
& \begin{array}{llll}
1 / 4 & 1 / 2 & 3 / 4 \\
0 & & 1 & 1
\end{array} \\
& R=\left\{\frac{1}{n}, n \in \mathbb{N}\right\} \rightarrow(0,1] \text { (range) } \\
& Q^{\prime}+Q^{c} \\
& a=2, b=1, c=3, d=1 \\
& \frac{2+3}{1+1}=\frac{5}{2}=2 \frac{1}{2} \\
& R=\left\{\begin{array}{lll}
1 & \rightarrow & 1 \\
2 & \rightarrow & 1 / 2 \\
3 & \rightarrow & 1 / 3
\end{array} \downarrow\right. \text { map }
\end{align*}
$$

EXAMPLE 2. Let a and b be positive integers. Show that $\sqrt{ } 2$ always lies between $(a \mid b)$ and $(a+2 b)(a+b)$.
Let $\sqrt{2}<\frac{a}{b} \quad \Rightarrow \quad 2<\frac{a^{2}}{b^{2}} \quad \Rightarrow \quad 2 b^{2}<a^{2}$

$$
\begin{align*}
& a^{2}+4 b^{2}=a^{2}+2 b^{2}+2 b^{2}<a^{2}+a^{2}+2 b^{2}=2 a^{2}+2 b^{2} \tag{1}\\
& \Rightarrow a^{2}+4 b^{2}<2\left(a^{2}+b^{2}\right) \\
& \text { (1) } \frac{a+2 b}{a+b}<\sqrt{2}<\frac{a}{b} \tag{2}\\
& (a+2 b)^{2}=a^{2}+4 a b+4 b^{2}<2\left(a^{2}+b^{2}\right)+4 a b \\
& \Rightarrow \quad(a+2 b)^{2}<2\left(a+b^{2}\right) \\
& \Rightarrow \quad \frac{a+2 b}{a+b}<\sqrt{2} \quad \text { (case 1) }
\end{align*}
$$

Reversing the steps, we get the second half.

$$
\begin{aligned}
& \sqrt{2}>\frac{a}{b} \quad \Rightarrow a^{2}<2 b^{2} \\
& 2(a+b)^{2}=2\left(a^{2}+2 a b+b^{2}\right)=a^{2}+a^{2}+4 a b+4 b^{2}<2 b^{2}+a^{2}+4 a b+4 b^{2} \\
& \Rightarrow \quad 2(a+b)^{2}<(a+2 b)^{2} \\
& \Rightarrow \quad \sqrt{2}<\left(\frac{a+2 b}{a+b}\right) \\
& \begin{array}{l}
\text { sumo } \\
\text { square } \\
\text { numbers }
\end{array}\left\{\begin{array}{l}
=\frac{2 b^{2}+(a+2 b)^{2}}{<(a+2 b)^{2}}
\end{array}\right.
\end{aligned}
$$

EXAMPLE 3. Given any real number $x>0$, show that there exists an irrational number ξ, such that $0<\xi<x$.
Case x is irrational, $\exists e, 0<e<x, e \in Q^{c}$
consider $x / 2$. Set $e=x / 2, \exists e, e \in Q^{c}, 0<e<x$
case $2 \quad x$ is rational, $\exists e, \quad 0<e<x, e \in Q^{c}$
Consider $x / \sqrt{2}$. set $e=x / \sqrt{2}$, $\exists e, e \in Q^{c}, 0<e<x$
$(0,1]$ - infinite irrational numbers, rational numbers
EXAMPLE 4. Show that $\sqrt{2}+\sqrt{ } 5$ is irrational.
Assume $\sqrt{2}+\sqrt{5}$ is rational. Then $\sqrt{2}+\sqrt{5}=p / q=x, \quad x \in Q$

$$
\begin{aligned}
\text { Assume } & \\
{\left[(a+b)^{2}=a^{2}+b^{2}+2 a b\right] } & \Rightarrow 7+2 \sqrt{10}=p^{2} / q^{2} \\
& \Rightarrow 2 \sqrt{10}=p^{2} / q^{2}-7 \\
\text { (Contradiction) } & \Rightarrow \sqrt{10}=\frac{1}{2}\left(p^{2} / q^{2}-7\right)
\end{aligned}
$$

(1) $0.454545 \cdots \Rightarrow p / q$ form

$$
\left.\begin{array}{l}
x=0.454545 \cdots \\
100 x=45.454545 \cdots
\end{array}\right\} \begin{aligned}
& 99 x=45 \\
& \Rightarrow x=45 / 99=5 / 11
\end{aligned}
$$

(2) $0.761761761 \ldots \quad x=761 / 999$
(3) $0.142871428714287 \cdots \quad x=\frac{14287}{99999}$
(4) $0.12345454545 \ldots$

$$
\begin{aligned}
10^{3} x & =123.4545 \cdots \\
10^{5} x & =12345 \cdot 4545 \cdots \\
\left(10^{5}-10^{3}\right) x & =12222 \\
x & =\frac{12222}{99600} \frac{1358}{11000} \\
& =\frac{679}{5500}
\end{aligned}
$$

Equations

$$
\begin{aligned}
& \text { (1) } x-y=5 \\
& \rightarrow \frac{2 x-2 y=10}{x-y=5} \\
& \text { Let } y=k, \lambda=k+5 \\
& \text { Solution set }=\{(k+5, k), k \in \mathbb{R}\} \\
& \text { (2) } 2 x+3 y=7 \\
& 2 \times(x+2 y=3) \vee\left[\begin{array}{ll:l}
2 & 2 & 3
\end{array}\right] \\
& 2 x+4 y=6 \\
& y=-1 \\
& x-2=3 \\
& \Rightarrow x=5 \quad \text { Gaussian } \\
& \text { Elimination } \\
& R_{1}=R_{1}-R_{2} \\
& {\left[\begin{array}{llll}
1 & 1 & \vdots & 4 \\
1 & 2 & \vdots
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& R_{1}=R_{1}-R_{2}\left[\begin{array}{ccc:c}
1 & 0 & 0 & 2 \\
0 & 1 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \Leftarrow . \\
& \begin{array}{c}
3 x+y+z=1 \\
6 x-y=7 \\
6 y+z=5
\end{array} \quad\left[\begin{array}{ccc:c}
3 & 1 & 1 & 1 \\
6 & -1 & 0 & 7 \\
0 & 6 & 1 & 5
\end{array}\right] \\
& y+k=-1 \quad \Rightarrow y=-1-k \\
& {\left[\begin{array}{ccc:c}
3 & -5 & 0 & -4 \\
6 & -1 & 0 & 7 \\
0 & 6 & 1 & 5
\end{array}\right]} \\
& {\left[\begin{array}{ccc:c}
27 & 0 & 0 & -39 \\
6 & -1 & 0 & 7 \\
0 & 6 & 1 & 5
\end{array}\right] \quad R_{1}=R_{1}-5 R_{2}} \\
& {\left[\begin{array}{ccc:c}
27 & 0 & 0 & -39 \\
0 & -1 & 0 & 7+2,29 \\
0 & 6 & 1 & 5
\end{array}\right] \quad R_{2}=R_{2}-\frac{2}{9} R_{1}} \\
& {\left[\begin{array}{ccc:c}
1 & 0 & 0 & -13 / 9 \\
0 & 1 & 0 & -47 / 3 \\
0 & 0 & 1 & 5+6-47 / 3
\end{array}\right]} \\
& R_{3}=R_{3}-6 R_{2} \quad\left[\begin{array}{ccc:c}
1 & 0 & 0 & -13 / 9 \\
0 & 1 & 0 & -4 x / 3 \\
0 & 0 & 1 & 99
\end{array}\right] \rightarrow x \rightarrow y
\end{aligned}
$$

Equations
8:00 PM

Inconsistent system/ no solution $x=13 / 2, y=-10, x=-6$
Best

HaW

$$
\begin{aligned}
& {\left[\begin{array}{ccc:c}
1 & 1 & -1 & 2 \\
-1 & 1 & 1 & 4 \\
1 & -1 & 1 & 6
\end{array}\right] \quad R_{1}=\frac{R_{1}+R_{3}}{2}} \\
& {\left[\begin{array}{ccc:c}
1 & 0 & 0 & 4 \\
-1 & 1 & 1 & 4 \\
1 & -1 & 1 & 6
\end{array}\right] R_{2}=R_{1}+R_{2}\left[\begin{array}{ccc:c}
1 & 0 & 0 & 4 \\
0 & 1 & 1 & 8 \\
1 & -1 & 1 & 6
\end{array}\right] \quad R_{3}=R_{3}+R_{2}} \\
& {\left[\begin{array}{lll:l}
1 & 0 & 0 & 4 \\
0 & 1 & 1 & 8 \\
1 & 0 & 2 & 14
\end{array}\right] \quad R_{3}=\frac{R_{3}-R_{1}}{2} \quad\left[\begin{array}{lll:l}
1 & 0 & 0 & 4 \\
0 & 1 & 1 & 8 \\
0 & 0 & 1 & 5
\end{array}\right]} \\
& {\left[\begin{array}{lllll}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 5
\end{array}\right] \text { Alt }\left[\begin{array}{ccc:c}
1 & 0 & 0 & 4 \\
-1 & 1 & 1 & 4 \\
1 & -1 & 1 & 6
\end{array}\right] \stackrel{R_{2}=R_{2}+R_{3}}{2}\left[\begin{array}{ccc:c}
1 & 0 & 0 & 4 \\
0 & 0 & 1 & 5 \\
1 & -1 & 1 & 6
\end{array}\right] \rightarrow z} \\
& R_{3}=\left(R_{3}-R_{1}-R_{2}\right)(-1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Friday, March 31, } 2023 \\
& x+y+z=1 \\
& 3 x+3 y+z=5 \\
& {\left[\begin{array}{lll:l}
3 & 3 & 1 & 5 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{ccc:c}
0 & 0 & 1 & -1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& \left.R_{2}=R_{2}-k_{1}\left[\begin{array}{ccc:c}
0 & 0 & 1 & -1 \\
1 & 1 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow \begin{array}{l}
\rightarrow z=-1 \\
\rightarrow y
\end{array} \quad \begin{array}{c}
\text { lat } x=k \\
k+y=2 \\
\end{array} \quad \Rightarrow \begin{array}{c}
y=2-k
\end{array}\right\}=\{(k, 2-k,-1), k \in \mathbb{R}\} \\
& \text { (12) } \begin{array}{r}
x+y=9 \\
2 x+y=3 \\
x-y=4
\end{array} \quad\left[\begin{array}{ccc:c}
1 & 1 & 0 & 9 \\
2 & 1 & 0 & 3 \\
1 & -1 & 0 & 4
\end{array}\right] \rightarrow\left[\begin{array}{lll:l}
2 & 0 & 0 & 13 \\
2 & 1 & 0 & 3 \\
1 & -1 & 0 & 4
\end{array}\right] \quad R_{1}=R_{1}+R_{3} \\
& \left.\checkmark\left[\begin{array}{ccc:c}
2 & 0 & 0 & 13 \\
0 & 1 & 0 & -10 \\
1 & -1 & 0 & 4
\end{array}\right] \quad \begin{array}{ccc:c}
1 & 0 & 0 & 13 / 2 \\
0 & 1 & 0 & -10 \\
1 & 0 & 0 & -6
\end{array}\right] \quad R_{2}=R_{2}-R_{1}=R_{3}+R_{2}
\end{aligned}
$$

Equations
Sunday, April 16, 2023

$$
\begin{aligned}
x-y+\omega+z & =10 \\
y-z & =4 \\
x+\omega & =14
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc:c}
1 & -1 & 1 & 1 & 10 \\
0 & 1 & -1 & 0 & 4 \\
1 & 0 & 0 & 1 & 14
\end{array}\right]} \\
& -\left[\begin{array}{cccc:c}
1 & 0 & 0 & 1 & 14 \\
0 & 1 & -1 & 0 & 4 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{array}{ll}
z=m, & x=14-m \\
w=n & y=4+w
\end{array}
$$

(m, n)

$$
\begin{aligned}
& w=n, y=4+w \\
& \text { solution }=\{(14-m, 4+n, m, n), m, n \in \mathbb{R}\}
\end{aligned}
$$

Determinant
(s' matrix) $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

$$
\begin{array}{ll}
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] & \operatorname{det}(A) \text { or }|A|=a d-b c \\
A_{1}=\left[\begin{array}{ll}
c & d \\
a & b
\end{array}\right] & |A|=b c-a d
\end{array}
$$

$$
\left[\begin{array}{cc}
2 & 3 \\
5 & -1
\end{array}\right]\left\{\begin{array}{l}
a x+b y=c \\
a_{1} x+b_{1} y=c
\end{array} \text { (1) unique solution exists if }\left|\begin{array}{ll}
a & b \\
a_{1} & b_{1}
\end{array}\right| \neq 0\right.
$$

(2) $\underline{\text { If }} \operatorname{det}=0$, \& $\frac{a}{a_{1}}=\frac{b}{b_{1}} \neq \frac{c}{c_{1}} \quad$ (Inconsistent/parallel lines)
b If Let $=0, \& \frac{a}{a_{1}}=\frac{b}{b_{1}}=\frac{c}{c_{1}} \quad$ (Infinite $/ \begin{gathered}\text { coincident } \\ \text { lines) }\end{gathered}$

$$
A=\left[\begin{array}{ccc}
a & \vdots & \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right] \quad a\left[\begin{array}{ll}
b_{1} & c_{1} \\
b_{2} & x_{1} \\
b_{2}
\end{array}\right]+b\left[\begin{array}{ll}
c_{1} & a_{1} \\
c_{2} & a_{2}
\end{array}\right]+c\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right]
$$

(Laplace Expansion) $=a\left(b_{1} c_{2}-b_{2} c_{1}\right)+b\left(c_{1} a_{2}-a_{1} c_{2}\right)+c\left(a_{1} b_{2}-b_{1} a_{2}\right)$

$$
A_{1}=\left[\begin{array}{lll}
a & b & c \\
a_{1} & b_{1} & c_{1} \\
a & b & c
\end{array}\right] \quad \begin{aligned}
& a\left(b_{1} c-b c_{1}\right)+b\left(c_{1} a-c a_{1}\right)+c\left(a_{1} b-b_{1} a\right) \\
& =a b 1 c-a b c_{1}+b c_{1} a-b c a_{1}+c a b-c b_{1} \alpha=0
\end{aligned}
$$

\qquad
Arithmetic mean $=A M=\frac{a+b}{2}$

$$
\frac{a}{c}=\frac{c}{b}
$$

Geometric mean $=G M=\sqrt{a b}$
Harmonic mean $=H M=\frac{2 a b}{a+b}$
Check (AM $2 M \geqslant H M$) $a=b$

Canchy-Schwarz Inequality
Sigh definition Cauchy-Schwarz inequality states that for all real numbers a_{i} and b_{i}, we have

$$
\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right) \geq\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2},
$$

where equality holds if and only if $\frac{a_{i}}{b_{i}}=k$ for some constant $k \in \mathbb{R}^{+}$, for all $1 \leq i \leq n$ which have $a_{i} b_{i} \neq 0$.
n

$$
\begin{aligned}
& \sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\ldots+a_{n} \\
& \prod_{i=1}^{n} a_{i}=a_{1} \cdot a_{2} \cdot a_{3} \cdots a_{n}
\end{aligned}
$$

$$
\left(a_{1}^{2}+a_{2}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}\right) \geqslant
$$

$$
\left(a_{1} b_{1}+a_{2} b_{2}\right)^{2}
$$

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) \geqslant(a c+b d)^{2}
$$

(Fibonacc i-Brahmagupta
Suppose we want to find the minimum value of the expression $x^{2}+4 y^{2}$, subject to the Identity)

$$
1,2, x, y \longrightarrow 5\left(x^{2} \longrightarrow\left(x^{2}+2^{2}\right)\left(x^{2}+y^{2}\right) \geqslant(x+2 y)^{2} \Rightarrow\right)^{2}
$$

Use $x=5-y, \quad 5\left[(5-y)^{2}+y^{2}\right] \geqslant(5-y+2 y)^{2}$

$$
\begin{aligned}
& \Rightarrow \quad 5\left[25+2 y^{2}-10 y\right] \geqslant(5+y)^{2} \quad x^{2}+4 y^{2} \geqslant 0 \sqrt{ } \\
& (x+y=5) \\
& \Rightarrow \frac{125+10 y^{2}-50 y \geqslant 25+y^{2}+10 y}{y \geqslant 0} \\
& (a+b+c)(1 / a+1 / b+1 / c) \geq 9 \quad, \quad a, b, c \in \mathbb{R}^{+} \\
& \left\{\begin{array}{l}
y=0, x=5 \\
x=0, y=5
\end{array}\right. \\
& \sqrt{a}, \sqrt{b}, \sqrt{c}, \frac{1}{\sqrt{a}}, \frac{1}{\sqrt{b}}, \frac{1}{\sqrt{c}} \\
& =\left[(\sqrt{a})^{2}+(\sqrt{b})^{2}+(\sqrt{c})^{2}\right]\left[\left(\frac{1}{\sqrt{a}}\right)^{2}+\left(\frac{1}{\sqrt{b}}\right)^{2}+\left(\frac{1}{\sqrt{c}}\right)^{2}\right] \\
& \geqslant\left(\sqrt{a} \cdot \frac{1}{\sqrt{a}}+\sqrt{b} \cdot \frac{1}{\sqrt{b}}+\sqrt{c} \cdot \frac{1}{\sqrt{c}}\right)^{2}
\end{aligned}
$$

Inequalities
Friday, March 31, 2023

$$
\left(a_{1}+\frac{1}{a_{2}}\right)\left(a_{2}+\frac{1}{a_{3}}\right)^{\text {Firday, March } 31,2023}{ }^{8.00 P M}\left(a_{n-1}+\frac{1}{a_{n}}\right)\left(a_{n}+\frac{1}{a_{1}}\right) \geqslant 2^{n}
$$

$$
\begin{aligned}
& \text { LHS } \\
& \uparrow \frac{\left(a_{1} a_{2}+1\right)\left(a_{2} a_{3}+1\right) \cdots\left(a_{n} a_{1}+1\right)}{\pi a_{i}=1} \\
& \left(a_{1} a_{2}+1\right)\left(a_{2} a_{3}+1\right) \cdots\left(a_{n} a_{1}+1\right) \geqslant \overline{2} \sqrt{a_{1} a_{2} \cdots a_{n}} \\
& \left\{\begin{array}{l}
\frac{a_{1} a_{2}+1}{2} \geqslant \sqrt{a_{1} a_{2} \cdot 1} \\
a_{1} a_{2}+1 \geqslant 2 \sqrt{a_{1} a_{2}} \\
a_{2} a_{3}+1 \geqslant 2 \sqrt{a_{2} a_{3}}
\end{array}\right\} a_{2} \text { (finequality) }=2^{n} 2^{n} \underbrace{a_{1} a_{2} a_{3} \ldots}_{\text {AM-GM }} \sqrt{a_{1} a_{1} a_{3}} \\
& \frac{\left(a_{1} a_{2}+1\right)\left(a_{2} a_{3}+1\right) \cdots\left(a_{n} a_{1}+1\right)}{\pi a_{i}} \geqslant 2^{n} \quad \text { Proved }
\end{aligned}
$$

let $a, b \in \mathbb{R}^{+}, \quad \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{4}{a^{2}+b^{2}} \geqslant \frac{32\left(a^{2}+b^{2}\right)}{(a+b)^{4}}$

$$
\begin{aligned}
& \text { 1st ferm } \rightarrow\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right) \times\{\text { USe } A M \geqslant G M \\
& 2^{\text {nd }} \text { term } \rightarrow \frac{4}{a^{2}+b^{2}}, 4 \frac{1}{2}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{4}{a^{2}+b^{2}}\right) \geqslant \\
& \Rightarrow \text { LHS } \geqslant 2 \sqrt{\frac{a^{2}+b^{2}}{a^{2} b^{2}} \cdot \frac{4}{4} \cdot \frac{a^{2}+b^{2}}{a^{2}}} \\
& =\frac{4}{a b} \text { inequality is equivalent to }\left\{\frac{4}{a b} \geqslant \frac{32\left(a^{2}+b^{2}\right)}{(a+b)^{4}}\right. \text {, ftrue } \\
& \begin{array}{l}
\text { This inequality is equivalent to } \longrightarrow \quad C \text { LHS } \geqslant \frac{4}{a b} \geqslant \text { RH's } \\
\frac{4}{a b} \geqslant \frac{32\left(a^{2}+b^{2}\right)}{(a+b)^{4}}
\end{array} \\
& \Rightarrow \quad 4(a+b)^{4} \geqslant 32\left(a^{2}+b^{2}\right) a b \\
& \begin{cases} & \Rightarrow \\
& \quad(a+b)^{4}-8 a b\left(a^{2}+b^{2}\right) \geqslant 0 \\
& \quad a^{4}-4 a^{4} b+6 a^{2} b^{2}-4 a b^{3}+b^{4} \geqslant 0\end{cases}
\end{aligned}
$$

Inequalities
Sunday, April 30, 2023 9:00 AM

$$
a^{2}+b^{2}+c^{2} \geqslant a b+b c+c a
$$

Consider a^{2}, b^{2}, c^{2}

$$
\begin{aligned}
& \left(1+\frac{1}{n}\right)^{n}<\left(1+\frac{1}{n+1}\right)^{n+1}, n \in \mathbb{N} \\
& b^{n+1}-a^{n+1}=(b-a)\left(b^{n}+b^{n-1} a\right. \\
& (\text { for } b>a) \\
& \left.+\cdots+a^{n}\right)
\end{aligned}
$$

$$
\frac{a^{2}+b^{2}}{2} \geqslant \sqrt{a^{2} \cdot b^{2}}
$$

$$
\Rightarrow \quad \frac{a^{2}+b^{2}}{2} \geqslant a b
$$

$$
\rightarrow(n+1) a^{n}<b^{n}+b^{n-1} a+b^{n-2} a^{2}+\cdots+a^{n}<(n+1) b^{n}
$$

(Add it cyclically)

$$
\begin{aligned}
& \rightarrow(n+1) a^{n}<b^{n}+b^{n} a+b^{n}+\cdots+a<b^{n+1}-a^{n+1}<(n+1) b^{n}(b-a)(\text { multiplying by } b-a \neq 0 \\
& \left.=(n+1) a^{n}(b-a) \quad \text { throughout }\right)
\end{aligned}
$$

$$
\text { Use } a=\left(1+\frac{1}{n+1}\right), b=\left(1+\frac{1}{n}\right)
$$

Then $b-a=\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n(n+1)}$. Replace the values in (1)

$$
\therefore \frac{1}{n}\left(1+\frac{1}{n+1}\right)^{n}<\left(1+\frac{1}{n}\right)^{n+1}-\left(1+\frac{1}{n+1}\right)^{n+1}<\frac{1}{n}\left(1+\frac{1}{n}\right)^{n}
$$

Consider,

$$
\begin{aligned}
& \left(1+\frac{1}{n}\right)^{n+1}-\left(1+\frac{1}{n+}\right)^{n+1}<\frac{1}{n}\left(1+\frac{1}{n}\right)^{n} \\
\Rightarrow & \left(1+\frac{1}{n}\right)^{n+1}-\frac{1}{n}\left(1+\frac{1}{n}\right)^{n}<\left(1+\frac{1}{n+1}\right)^{n+1} \\
\Rightarrow & \left(1+\frac{1}{n}\right)^{n}\left\{1+\frac{1}{n}-\frac{1}{n}\right\}<\left(1+\frac{1}{n+1}\right)^{n+1} \\
\Rightarrow & \left(1+\frac{1}{n}\right)^{n}<\left(1+\frac{1}{n+1}\right)^{n+1}
\end{aligned}
$$

If $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}^{+}$, and each of them is less than $1, s_{n}=\sum a_{i}$, then
(i) $\left.1-s_{n}<\left(1-a_{1}\right)\left(1-a_{2}\right) \cdots\left(1-a_{n}\right)<\frac{1}{1-s_{n}}\right\} \begin{aligned} & \text { Weierstrass } \\ & \text { Inequality }\end{aligned}$
(ii) $\left.1+s_{n}<\left(1+a_{1}\right)\left(1+a_{2}\right) \cdots\left(1+a_{n}\right)<\frac{1}{1+s_{n}}\right\}$ Inequality
observe $\left(1-a_{1}\right)\left(1-a_{2}\right)=1-a_{1}-a_{2}+a_{1} a_{2}>1-\left(a_{1}+a_{2}\right)$
and $\left(1-a_{1}\right)\left(1-a_{2}\right)\left(1-a_{3}\right)=1-\left(a_{1}+a_{2}\right)-a_{3}+\left(a_{1}+a_{2}\right) a_{3}$

$$
>1-\left(a_{1}+a_{2}+a_{3}\right)
$$

using induction, $\left.\Pi\left(1-a_{i}\right)>1-\sum a_{i}=1-s_{n}\right\}$ (definition of s_{n})
Similarly, we can show $\Pi\left(1+a_{i}\right)>1+s_{n}$
We know $\left(1+a_{i}\right)\left(1-a_{i}\right)<1$, as $a_{i}<1$ and $a_{i} \in \mathbb{R}^{+}$
$\Rightarrow\left(1-a_{i}\right)<\frac{1}{\left(1+a_{i}\right)}$ for $i \in \mathbb{N}$

$$
\begin{aligned}
\left(1-a_{1}\right)\left(1-a_{2}\right) \cdots\left(1-a_{n}\right) & <\frac{1}{1+a_{1}} \cdot \frac{1}{1+a_{2}} \cdots \frac{1}{1+a_{n}}<\frac{1}{1+s_{n}} \\
\Rightarrow \pi\left(1-a_{i}\right) & <\frac{1}{\pi\left(1+a_{i}\right)}<\frac{1}{1+s_{n}}
\end{aligned}
$$

$$
\pi\left(1+a_{i}\right) \geqslant\left(1+\sum a_{i}\right) \cdot \frac{2^{n}}{1+n}
$$

Observe $1+a_{i}=2\left(\frac{1}{2}+\frac{a_{i}}{2}\right)$, extending:

$$
\begin{aligned}
\pi\left(1+a_{i}\right)= & 2^{n} \pi\left(\frac{1}{2}+\frac{a_{i}}{2}\right) \quad(\text { multiplying }) \\
= & 2^{n} \pi\left(1+\frac{a_{i}-1}{2}\right) \\
\geqslant & 2^{n}\left(1+\frac{a_{1}-1}{2}+\frac{a_{2}-1}{2}+\cdots+\frac{a_{n}-1}{2}\right) \\
& {\left[u \operatorname{sing} \pi\left(1+a_{i}\right) \geqslant 1+\sum a_{i}\right] } \\
\geqslant & 2^{n}\left(1+\frac{a_{1}-1}{n+1}+\frac{a_{2}-1}{n+1}+\cdots+\frac{a_{n-1}}{n+1}\right) \\
= & 2^{n}\left(1+a_{1}+a_{2} \cdots+a_{n}\right)
\end{aligned}
$$

For any $n, \frac{1}{2 \sqrt{n+1}}<\frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2 n-1}{2 n}<\frac{1}{\sqrt{2 n+1}}$
(1) $a>b, b>c$, then $a>c$

Inequalities
Sunday, May 14, 2023 10:00 AM
(2) $a>b$, then $a+c>b+c, c \geqslant 0$
(3) $a+b>c+d \Rightarrow a+b-c>d$ (can transpose signs)
(4) $a>b \Rightarrow b<a$
(5) $a>b \Rightarrow a c>b c \Rightarrow b / c$, for $c>0$
(6) $a>b \quad \Rightarrow \quad-b>-a$
(7) If $a>b$, then $1 / a<1 / b$ for $a, b>0$
(8) $a_{1}>b_{1}, a_{2}>b_{2}, \ldots, a_{n}>b_{n} \quad \Rightarrow \quad \sum_{i}^{n} a_{i}>\sum b_{i}$ \}positive
(9) $a_{1}>b_{1}, a_{2}>b_{2}, \cdots, a_{n}>b_{n} \Rightarrow T a_{i}>\prod b_{i} \quad \Rightarrow$ numbers
(10) $a>b, \quad a^{n}>b^{n}$ and $a^{1 / n}>b^{1 / n}$
\rightarrow Which is one is greater? $(31)^{12}$ or $(17)^{17}$

$$
\begin{aligned}
& \left.\rightarrow \text { Which is one is greater? (31) } \quad \text {, } 31)^{12}<(32)^{12}=\left(2^{5}\right)^{12}=2^{60}<2^{68}\left[a^{m}\right)^{n}=a^{m n}\right]^{4 \times 17}=\left(2^{4}\right)^{17}=(16)^{17} \\
& 31<32 \\
& \therefore(31)^{12}<2^{60}<2^{68}=16^{17}<17^{17} \quad \text { Hence, }(17)^{17}>(31)^{12}
\end{aligned}
$$

We know, $17716,(17)^{17}>(16)^{17}$. Hence, $(17)^{17}>(31)^{12}$
\rightarrow Which is greater? $(30)^{100}$ or 2^{567} $30<32 \Rightarrow 30^{100}<32^{100}$

$$
\begin{aligned}
& <32^{100} \\
& =\left(2^{10}\right)^{50}=(1024)^{50}<(1024)^{54}
\end{aligned}
$$

$$
\begin{array}{r}
\left(2^{20}\right)^{27}<\left(2^{21}\right)^{27}=2^{567} \\
\therefore \quad 30^{100} \\
\rightarrow \text { Show }(1.01)^{1000}>1000
\end{array}
$$

$$
\begin{aligned}
& \left.=(1024)^{10}\right)^{54}=\left(2^{20}\right)^{27} \\
& =\left(2^{91}\right.
\end{aligned}
$$

HW 1 7^{92} or 8^{91} ?
HO 2150^{300} or $(20000)^{100}$ $+(100)^{100}$

$$
\begin{aligned}
(a+b)^{2}= & a^{2}+2 a b+b^{2} \\
(a+b)^{3}= & a^{3}+3 a^{2} b^{1}+3 a^{1} b^{2}+b^{3} \\
(a+b)^{4}= & a^{4}+4 a^{3} b^{1}+6 a^{2} b^{2}+4 a^{3} b^{3} \\
& +10 b^{4} \\
(a+b)^{5}= & 6 a^{5}+5 a^{4} b^{1}+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a^{4} b^{4}+b^{5} \\
(a+b)^{6}= & a^{6}+6 a^{5} b+15 a^{4} b^{2}+20 a^{3} b^{3}+15 a^{2} b^{4}+6 a b^{5}+b^{6} \\
(a+b)^{n}= & a^{n}+{ }^{4} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\cdots+{ }^{n} C_{n} b^{n} \\
=1 & =1 a^{n}+C_{1} a^{n-1} b+C_{2} a^{n-2} b^{2}+\cdots+C_{n} b^{n}
\end{aligned}
$$

$$
\text { Put } a=1, b=x:(1+x)^{n}=1+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}
$$

$$
\Rightarrow(1+x)^{n}>1+c_{1} x=1+n x
$$

$$
\therefore \quad(1+x)^{n}>1+n x
$$

Inequalities
Sunday, May 14, 2023

$$
\begin{aligned}
(1+0.01)^{8}> & 1+8 \times 0.01 \\
& =1.08
\end{aligned}
$$

LIS $>(1-4)^{25}>(1-4)^{24}$

$$
\begin{aligned}
& =\left(1.4^{3}\right)^{8} \\
& >(2.7)^{8} \\
& >(2.5)^{8} \\
& >5^{8} / 2>1000
\end{aligned}
$$

which one is bigger,

$$
\begin{aligned}
{\left[(1+0.01)^{8}\right]^{125} } & >(1+0.08)^{125} \\
& =\left[(1+0.08)^{5}\right]^{25} \\
& >(1+0.4)^{25}
\end{aligned}
$$

$$
\text { (1) \&(2), } \frac{\sqrt{2}+\sqrt{3}}{\sqrt{2+\sqrt{3}}}>\sqrt{2}
$$

Multiplying (1) \& (2),
Again, $\sqrt{2} \leftarrow \sqrt{3}, ~ \sqrt{2}+\sqrt{3}<2 \sqrt{3}$

$$
1<\sqrt{3} \quad \Rightarrow \quad 1+2<\sqrt{3}+2 \quad \Rightarrow \quad \sqrt{3}<\sqrt{2+\sqrt{3}}
$$

Multiplying (4) \& 5

$$
\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2+\sqrt{3}}}<2 \sqrt{3}-\frac{1}{\sqrt{3}}
$$

$$
\Rightarrow \quad \frac{1}{\sqrt{2+\sqrt{3}}}<\frac{1}{\sqrt{3}}
$$

Combine (3)\& (6) $\rightarrow \quad \sqrt{2}<\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2+\sqrt{3}}}<2$ (proved)

$$
\frac{101}{1001}>\frac{10001^{K}}{100001}>\frac{1000001}{10000001} \quad \begin{aligned}
& 101 \rightarrow 10 x \rightarrow 1010=10 x-9 \\
& D=10 \mathrm{~N}-9
\end{aligned}
$$

$$
\frac{x}{10 x-9}=a
$$

then $\frac{1}{a}=\frac{10 x-9}{x}=10-9 / x$
$f(x), g(x), \rightarrow$ check $f(x)-g(x)$

If x increases, a / x decreases and $1 / a$ increases $\Rightarrow a$ decreases
show $m^{3}+1>m^{2}+m$, for $m>-1, m \neq 1, m \in \mathbb{Z}$ (try with difference)

$$
\begin{aligned}
& \text { Show that } \\
& \begin{aligned}
\sqrt{2} & <\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2+\sqrt{3}}}<2 \\
& <2
\end{aligned} \\
& \begin{aligned}
\sqrt{2}<\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2+\sqrt{3}}<2} & =\left[(30 \times 5)^{3}\right]^{100} \\
& =\sqrt{100} \times\left(5^{3}\right)^{100} \\
\sqrt{3}>\sqrt{2} \text { and } \sqrt{3}<2 \text { (known) } & =\left(30^{3}\right)^{100} \times(27000)^{100} \times(125)^{100}
\end{aligned} \\
& \left(\begin{array}{l}
\sqrt{3}>\sqrt{2} \text { and } \sqrt{3}<\sqrt{2}=(1000)^{100} \times(125)^{100} \\
\sqrt{3}>\sqrt{2} \quad \Rightarrow \sqrt{2}+\sqrt{3}>2 \sqrt{2}-(1)
\end{array}\right. \\
& \sqrt{3}<2 \quad \Rightarrow \quad 2+2>\sqrt{3}+2 \\
& \Rightarrow \quad \sqrt{4}>\sqrt{\sqrt{3}+2} \\
& \begin{array}{l}
\Rightarrow \quad \sqrt{4}>\sqrt{\sqrt{3}+2} \\
\Rightarrow \quad 2>\sqrt{2+\sqrt{3}} \quad \Rightarrow \quad \frac{1}{\sqrt{2+\sqrt{3}}}<\frac{1}{2}
\end{array} \\
& \begin{aligned}
& \left(150^{3}\right)^{100} \\
= & {\left[(30 \times 5)^{3}\right]^{100} }
\end{aligned} \\
& \begin{array}{l}
=\left(30^{3}\right)^{100} \times\left(5^{3}\right)^{100} \\
=(27000)^{100} \times(125)^{100}
\end{array}
\end{aligned}
$$

Inequalities
Sunday, May 21, 2023
11:30 AM
$(m-1)^{2}(m+1)$ is always
positive for $m>-1, m \neq 1, m \in \mathbb{Z}$

$$
\begin{aligned}
& \left(m^{3}+1\right)-\left(m^{2}+m\right)=\left(m^{3}-m^{2}\right)-(m-1) \\
& =m^{2}(m-1)-1(m-1) \\
& =(m-1)\left(m^{2}-1\right)=(m-1)^{2}(m+1) \\
& \left(m^{3}+1\right)-\left(m^{2}+m\right)>0 \\
& \Rightarrow\left(m^{3}+1\right)>\left(m^{2}+m\right)
\end{aligned}
$$

HW) (1) $a^{3} b+a b^{3}<a^{4}+b^{4}, a \neq b$
(2) $x^{5}+y^{5}>x^{4} y+x y^{4}, x \neq y \quad\left[m^{3}+1=m^{2}+m\right.$, if $\left.m=-1\right]$

If $a>b$, and x is positive, then show $\frac{a+x}{b+x}<\frac{a}{b}$

$$
\frac{a+x}{b+x}-\frac{a}{b}=\frac{b(a+x)-a(b+x)}{b(b+x)}=\frac{-x(a-b)}{b(b+x)}<0
$$

Given, $a>b \Rightarrow(a-b)>0$, also, $x>0$
If $x>0$, then show $\left(x+\frac{1}{x}\right) \geqslant 2$

$$
\begin{aligned}
& \text { If } x>0, \text { then show }\left(x+\frac{1}{x}\right) \geqslant 2 \\
& x+\frac{1}{x}-2=\left\{\begin{array}{cc}
\frac{x^{2}+1-2 x}{x} \\
x+\frac{1}{x}>2 & \text { if } x \neq 1 \\
0 & \text { if } x \neq 1 \\
\text {, if } x=1
\end{array}\right. \\
& \text {, if } x<0
\end{aligned}
$$

and $x+\frac{1}{x}=2$ if $x=1$
Combining. $x+\frac{1}{x} \geqslant 2$ if $x>0$
[If $x<0$, then

$$
\left.x+\frac{1}{x} \leqslant-2\right]
$$

Inequalities

